A Compiled Report on Food Balance Sheet of Nawalpur Region

Vijaya Development Resources Center Gaindakot Municipality-8, Nawalparasi (East)

Supported by: **OPEN SOCIETY POLICY CENTER New York, America**

Message From Chairperson

Vijaya Development Resource Centre (VDRC- Nepal), initially established as Vijaya Youth Club, is a non-profit, non-political member based national level social development organization. It has been working in the community development sector for the last 40 years with a vision of Equitable, peaceful, affluent and self-reliant society. Established as a local self-help group in 1979, it is now recognized as a national level Social Development Non-Government Organization with multi-disciplinary human resources and good infrastructure facilities.

VDRC-Nepal has successfully completed a number of community development projects across the country and has made a significant contribution in bringing positive changes through a people-centered development and governance approach. It has successfully demonstrated how a holistic community development model can be applied for sustainable livelihoods in rural areas. Furthermore, it has been able to mobilize local resources and developed the foundations for a center for social learning. VDRC-Nepal has experienced four institutional development stages pioneering different development paradigms and models; namely, initial stage as a self-help group, institutional development stage as an intermediary organization, professionalism stage as a resource organization, and innovation stage as pioneering a holistic community development model.

From the last year the COVID-19 pandemic is communicating in different strains and forms all over Nepal. This have resulted in slowdown of agriculture, education and health sector. The major impact was also seen in the employment sector as fourteen lakh people lost their job while more than thirty percent people came under poverty line. In this crisis situation there is an immense need to increase the production, boost the supply chain and make the people adopt healthy food habits. COVID-19 raised severe problem for creating ample environment for agriculture production due to which production got declined. To boost every aspects of food production, distribution and consumption, need of a response program was felt. VDRC-Nepal with Open Society Policy Center (OSPC), New York, USA launched a program named Sustaining Municipal Food and Nutritional Security Through Food Balance **Approach** which was to be implemented in five municipal bodies of Nawalpur district and Chitwan. I appreciate that this program collected the data based reality on food production, supply and consumption of respective municipal bodies and constructed the food balance sheet.

I hope this document will help to picturize the actual scenario of the local level on food production, import, export, consumption as well as the problems inhibiting the agriculture and livestock production. Further this document prepared by joint collaboration with local municipal bodies will help in making plan and policies for abundant and sustainable food production.

At the end I want to thank all the stakeholders, municipal bodies and their officials, FBS working team for the admirable work in the form of this report and completion of the program.

ampit. Laxmi Gautam Chairperson

Vijaya Development Resource Center (VDRC)

Government of Nepal

National Planning Commission

Singha Durbar, Kathmandu

Dil Bahadur Gurung, PhD Member

Ref:- Date: 30 September 2021

Foreword

I am delighted to go through this report on Food Balance Sheet of Nawalpur Region of Gandaki province. I would like to thank VDRC-Nepal's team for the outstanding initiative in bringing this report to this level. I think, this report will add an additional knowledge in agriculture and livestock sector. The report has highlighted the major factors of the food production system on quantitative terms and also suggested plausible measures objectively to eliminate production barriers at the local level.

I highly appreciate for producing this report in the right time since the outputs are expected to contribute to address the gaps in agriculture and food security as identified in the 15th Development Periodic Plan. Core work at this depth if implemented effectively would help to contribute to achieve food security at municipal level. More importantly, this document would be instrumental to other municipalities in formulating their plans for the varying duration and rolling out activities accordingly in a bid to achieve zero hunger as planned in Sustainable Development Goals (SDG).

I have realized the difficulties faced by the team members and efforts put in mustering the information especially the statistics of this nature. NPC has long realized the need for such disaggregated data at municipal level to prepare and implement evidence based plan. This initiative could be replicated to other municipalities and therefore I request all municipalities to work on collecting similar information so that FBS of this kind could be developed by each municipalities.

The right to food for all citizens have been well accorded by the constitution of Nepal but the realization of this right needs concerted efforts by all levels of Government. In this context, the municipalities need to explore, plan and invest on transformative arrangements for producing enough food locally to meet the internal demand. This has been contextually and precisely addressed by this task. Therefore, I would like to congratulate VDRC-Nepal for their innovation and exemplary work in a short and difficult time of the pandemic. The concerns on agriculture and livestock production and the management of supply chain is rising due to the nationwide lock down and limited mobility during the pandemic. Availability of such FBS will help to plan for managing adequate food supply during such crisis thereby improving food security of people.

I wish VDRC-Nepal to continue innovating as they have been for the last four decades and become a reliable partner in support of policy formulation and program implementation especially on food security, poverty alleviation and other related sectors. Finally, the cornerstone VDRC-Nepal has put upon would be taken up by concerned stakeholders in successive plans of the relevant municipalities. I firmly believe other municipalities will also take an advantage of the partnership with VDRC-Nepal in learning and sharing to prepare an important document like this so that they can proceed for developing an evidence based plan and policies.

I wish VDRC-Nepal all the best for their upcoming endeavors.

Thank You!

Dil Bahadur Gurung, PhD

Member

Tel: 977-01-4211050, Fax: 977-01-4211700, E-mail:dbgurung@npc.gov.np, Website: www.npc.gov.np

Acknowledgment

This report presents the results of the Food Balance Sheets (FBS) of all four local municipal bodies of Nawalpur district and one ward of Bharatpur Metropolitan of the fiscal year 2020/21. The report has highlightened the picture of food production, distribution, and consumption at municipal level. The use of data indicators had helped to figure out the context more accurately and appropriately.

This piece of work was not possible without continuous support and feedback from the mayor, vicemayor, Chief Administrative Officer, ward president, agriculture and livestock officials of Gaindakot Municipality, Devchuli Municipality, Bulingtar Rural Municipality, BinayeTriveni Rural Municipality, and Bharatpur Metropolitan ward number -14. And Agriculture Knowledge Center (AKC), Chitwan and Nawalpur.

We highly acknowledge the assiduous efforts of expert duo, Dr. Badri Bastakoti and Dr. Ram Chandra Bastakoti, for data authentication and validation. We are indebted to our Project Advisor and Resource Person Mr. Tulasi Prasad Paudel (Senior Agriculture Scientist) for his immense support, guidance and contributions throughout the FBS compilation. His technical assistance and mentoring in analyzing potentiality and opportunities related to data identification, classification, collection, analysis, and interpretation have been worthful asset for the compilation of this work. Valuable inputs from Mr. Krishna Sapkota (Vice President -VDRC) and Mr. Bhumi Chapagain (Secretary-VDRC) were remained worth acknowledging from conceptualization to the end of the project.

Sincere gratitude is also extended to the Ministry of Agriculture and Livestock Development, Department of Irrigation, Central Bureau of Statistics, Food Management and Trading Company Ltd, and other state agencies, who have directly or indirectly helped in collecting information related to different commodities as well as to validate the data obtained.

VDRC-Nepal also owes its sincere thanks to our partner: Open Society Policy Centre, New York, USA for their financial support in course of the implementation of the project in the targeted location.

Last but not the least, we are also thankful to our FBS team for their untiring efforts to draft and finalize the report. The team comprised of officials under the guidance of Ms Neeta Yogi (Ex-Project Manager) and Mr. Adarsha Sigdel (Project Manager), Mr. Sheetal Aryal (Data Analyst), Facilitators Ms. Gyanu Sapkota, Mr. Badri Lamsal and Mr. Prem Prasad Sapkota 'Raju' and Senior Finance Officer Mr. Kalidas Gaudel.

Keshab Prasad Sapkota

Executive Director 30 September 2021

Drayter &

Table of Content

Exec	utive Su	mmary	V
1.	Introd	luction	1
2.	Backg	ground	1
	2.1.	The COVID-19 pandemic and food security in Nepal	2
	2.2.	Sustainable development Goal and Food Security	2
	2.3.	Establishment of Food Banks	3
	2.4.	Strengthening Agriculture Marketing and Ensuring Farmer's rights	3
	2.5.	The Necessity of Food Inventory System	4
3.	Justifi	ication of study	5
4.	Metho	ods and Methodology	6
	4.1.	Selection of study area	6
	4.2.	Implementation arrangements	6
	4.3.	Major Elements of Food Balance Sheet	6
	4.4.	Working Model of Food Balance Sheet	8
	4.5.	Primary Data Collection	8
	4.6.	Data Sources	8
5.	Resul	t and Discussion	9
	5.1.	Self-sufficiency Ratio	9
	5.2.	Import Dependency Ratio	10
	5.3.	Total Calorie Requirement	10
	5.4.	Calorie supplied by different food groups	11
	5.5.	Protein supplied by different food groups	11
	5.6.	Fat supplied by different food groups	12
	5.7.	Dietary supply of cereals	13
	5.8	Dietary supply of pulses	13
	5.9.	Dietary supply of meat	14
	5.10.	Dietary supply by different food groups	14
6.	Challe	enges and Limitations	15
7.	Lesso	n Learnt	15
	7.1.	Data backup and data sourcing	15
	7.2.	The urgency of implementation of Food Balance Sheet	15
	7.3.	Documentation of diversified food production and consumption	15
8.	Way l	Forward/Recommendations	15
9.	Concl	lusion	16
10.	Refer	ences	18
11.	Anne	X	19

Executive Summary

A food balance sheet is a factual statistical sheet that elaborates the conditions and patterns of food production, distribution, and consumption in a particular frame of time. The concept of the food balance sheet is old but its application in Nepal is at an early stage. It is a great indicator to determine the status of a country in malnutrition, self-sufficiency, and import dependency. It could further track the progress as aimed by different strategical goals sets by the government like Sustainable Development Goal (SDGs), Agriculture Development Strategy, Five Year plan, etc. It also acts as a monitoring and evaluation tool for national agricultural policies. One of the main applications of FBS is to calculate derived indicators which can be used to analyze a wide range of concepts, including hunger, malnutrition, import dependence, and food self-sufficiency. Among the major outputs of the FBS is the computation of Dietary Energy Supply (DES), which is an important indicator in determining the levels of undernourishment in a given country.

The current scenario of food and nutrition is more dependent on import than self-production. There had been a huge gap between demand and supply that had resulted in severe impacts on nutrition and dietary intake leading to malnutrition and food insecurity. Similarly, trends are alike at the local government level with national status. After the declaration of the Constitution of Nepal in 2015, Nepal has been divided into provinces and local government levels which have further opened up space for self-progress and development. Likewise, for sustainable agriculture production, efficient distribution, and diversified consumption local government can plan and implement strategies on local priorities and preferences. FBS could be an effective tool to draw their status of food production and consumption in the current scenario. Calamities like earthquakes, floods, landslides, and an outbreak of the COVID-19 pandemic have forced the local government and national government to rethink the level of preparedness for these uncertainties. FBS could picturize the real scenario on food production and consumption so that challenges and limitations could be addressed in time and reduce the hazardous effect of natural or biological challenges.

Different governmental and non-governmental agencies were communicated for the data related to the production, import, export, and consumption of the different commodities. But major of data was collected was the primary source of data as secondary data was unavailable in most of the agriculturerelated offices. A household-based survey was conducted by stratified purposive sampling method to detect every variation within the municipal area. Information on the area and agriculture area was obtained through the municipal/ ward profile. Elements related to the food balance sheet were calculated subsequently with the related formulas. Data analysis and validation were carried out with rigorous discussion with agri- depart officials of the municipality. The elaboration of the data and their respective findings were elaborated.

In the study report, rice was the major staple food, paddy occupied the higher cropping area and consumption of rice was highest amongst the cereals. The consumption of wheat was majorly in the form of wheat flour which was majorly imported and was the second-most consumed cereal while the major production of maize was utilized for animal feed. In the major study areas, lentil was the major source of pulses while the hilly side was more dependent on black gram and beans. Majorly in Bharatpur Metropolitan ward no 14, Gaindakot and Devchuli municipality there was significant production of kidney beans. Majorly imported legume crop was chickpea as it was the minimum produced legume crop. In all the municipal bodies major population imported oil rather than producing it. Oil of rapeseed was majorly consumed but currently, the use of sunflower oil and soya-bean oil has increased. The major vegetables produced and self-sufficient were green leafy vegetables, pumpkin, and colocasia. The major population was involved in subsistence farming which was the major source for vegetable supply. The hilly rural municipality i.e. Bulingtar had an abundance production of colocasia and pumpkin. In other municipal bodies also pumpkin was a bit underutilized and need to be diversified in terms of product. Major import on vegetable was more on cauliflower, cabbage, tomato, chilies, and mushroom. Among the fruits, Banana was found to be most consumed while major import was on apple and orange. Papaya was self-sufficient and was needed to be prioritized to make it a major fruit crop. Amongst the imported fruits, orange was found to be mostly imported while pomegranate was least imported. Eggs and milk

were found to be sufficiently produced in the area, therefore; these were found to be significantly exported. Chicken was the most consumed meat while pork was the least consumed. Although pork, buff, fish were found to be consumed in the area, the consumption entirely depended on the import while goat, poultry were reared for the meat.

Major dietary requirement for calories and protein was supplied by cereals as it covered the major production areas. All the municipal bodies had enough calories supplied except Bharatpur-14 with minimal margin. The major dietary supply was covered by cereal and majorly by paddy while vegetables, animal sources, pulses oilseeds, and fruit provide dietary supply followingly.

Thus as a whole construction of FBS in different five municipal bodies namely Gaindakot and Devchuli Municipality, Bulingtar and BinayeTriveni RM and Bharatpur Metropolitan ward no-14 have laid out the insights on food production and supply system and will be a great piece of an asset for planning and policy making.

1. Introduction

Food Balance Sheet (FBS) is a stastical tool that helps to precisely provide an overview of the patterns and conditions of food production, distribution and supply at the defined level of government. The major concept of the FBS is to figure out the status of the food system in terms of understanding the selfsufficiency ability and import dependency. This has been in use to explore, identify and adopt strategies to improve the internal adequacy of food each municipality, province or nation require. In addition, the strategy can be used as a tool to help support collaborating entities in collectively acquiring the food security. Literature suggest that this tool has been in use globally especially under the crisis situation. The same has recurred due to the Coronavirus pandemic which, from very beginning, showed impacts of erratic food prices and severe disruption of supply chain.

Vijaya Development Resource Center (VDRC-Nepal) has taken such impacts of the pandemic in alevel that interferes the overall livelihood of the citizens of the country and has accordingly decided to help municipalities use the tool in understanding the food security ststus and to develop locally feasible strategies in overcoming the shortfalls in the supply and distribution of food. Four municipalities from Nawalpur and a ward from Bharatpur Metropolis has been selected for this purpose.

2. Background

Two-thirds of the population of Nepal is engaged in agriculture, contributing to 26% of the national GDP. Due to its flatlands, rivers, and fertile soil, most of the country's agriculture takes place in the Terai area, though each of Nepal's ecological belts has its more favored crops and crop calendars. While Nepal's overall demand for food increases over time, unregulated urbanization of plains and fertile land, particularly in the Terai, has put downward pressure on the food supply in the country. Nepal is importing more agricultural goods than ever (food imports have increased fourfold from 2011 to 2018), and this makes domestic agriculture crucial to the country's food security. About 43% of Nepal is covered in forest and 24% (3.56 million ha) is agricultural land, but over half of all farmers cultivate on less than a hectare of land. The land distribution per person however is varied across districts. In Nepal, around 4.6 million people are food-insecure, with 20 percent of households mildly food-insecure, 22 percent moderately food-insecure, and 10 percent severely food-insecure, according to the 2016 Nepal Demographic and Health Survey (DHS). Remote and low productive remote areas, where rainfed subsistence agriculture is more pervasive, is found to be more prevalent of food insecurity in Nepal. According to the MoH (2017), the prevalence of severely food insecure population in the rural area is 12% while the same is 9% in urban settlement. Geographically, mountain and hilly zone seem to be more prevalent of food insecurity than terai zone, 14%, and 9 % respectively in mountain and terai zone. Low farm productivity, limited livelihood opportunities, and weak market connectivity caused by poor infrastructure, together with geographical heterogeneity, gender, and caste disparities are considered as underlying causes of food insecurity and undernutrition in Nepal (MoALD, 2018).

The Right to Food and Food Sovereignty Act, 2018, declares the right of all Nepali people to be free from hunger and to be able to access sufficient nutritious food all year round. The act also defines the right to food sovereignty, as the right of Nepali people to freely pursue the occupation of farmer or food producer, with adequate means and resources. The 2015 Constitution's declaration on the basic rights of Nepalese people, in which particular mention is made of food sovereignty. The Right to Food and Food Sovereignty Act was drafted as a landmark piece of legislation, one of few framework laws in the world declaring food to be a basic right. The Right to Food and Food Sovereignty Act holds the Government of Nepal accountable for ensuring its people's food security and the wellbeing of its farmers.

The government is implementing the Agriculture Development Strategy (ADS), Multi-sector Nutrition Plan (MSNP) II (2018-2022), and Zero Hunger Challenge National Action Plan (2016 - 2025) aiming to comprehensively improve the food security and nutrition status of the population. Further, the Fifteenth Plan (2019/20-2023/24) has a high priority to improve food security and nutrition. The Local Government Operation Act (LGOA) 2017 mandates the local governments to formulate, implement, monitor, evaluate and regulate policy, legislation, standards, norms related to the development projects and programs including Food and nutrition security. It also mandates local governments to implement the projects and delivery of services related to (a) agriculture and animal husbandry, (b) basic education and public health, (c) collection and documentation of data, and (d) formulation of local policies, legislations, standards, planning, implementation, monitoring and evaluation of agricultural and health-related activities. Therefore, this act will have several implications for food and nutritional security. This new structure of the country also affects to ensure production and availability of food, for better livelihood and employment of all groups of people for better access to food, education on food, health, and nutrition. Better food utilization, supplementary water, and health security to ensure holistic intake, to parallel empowerment of historically disadvantaged and vulnerable groups like women and indigenous communities, for example, for social protection and equitable distribution of food resources and agricultural production. Moving on from the MDGs, the SDGs have set new targets for food security in the signatory countries, including Nepal (LWF, 2017).

2.1. The COVID-19 pandemic and food security in Nepal

The government of Nepal (GoN) ordered a national lockdown as a response to the spread of the novel coronavirus (COVID-19) around the world, urging people to stay at home and closing schools while restricting the operation of businesses and markets. Food security is aggravated by COVID 19 because, during lockdown restriction of movement, closing down all the restaurant, production, markets, malls except emergency needs though they are steps designed to slow the spread of COVID-19 and to mitigate potentially devastating economic and social effects in Nepal, and reflect measures taken by most countries. While the restrictions on movement and activity in Nepal may be exacerbating food security issues across the country, they are steps designed to slow the spread of COVID-19 and to mitigate potentially devastating economic and social effects in Nepal, and reflect measures taken by most countries. The most affected sectors of Agriculture and Livestock, sectors are considered to be poultry, dairy, vegetables, and livestock production. This lockdown causes transportation difficulties that have been pushing down demand for goods in urban settings in some cases and also decreased demand for milk by 60% due to difficulties in accessing markets and consumer anxiety. Sudurpaschim Province is reported to be insufficient by 68 percent on the stock of food and non-food commodities. Due to this confinement, a majority of traders reported a low demand for both food and non-food commodities. Due to this lockdown income of many people losses and difficulties in movement demand for food and non-food items has decreased compared to the previous week. Due to the current COVID-19 crisis and lockdown, resulting in a limited movement of trucks and vehicles carrying goods, limited transportation services and supply of commodities have been affecting food security (WFP, 2020). The estimated stock market of Nepal is three months but not spread across the country uniformly. The sustained suspension of rice or other food goods exports could affect food security in the country. Nepal imported a total of 25,770 metric tons of food goods from major trade posts in Biratnagar, Birgunj, Kakarbhitta, and Bhairahawa. However, Humla, Bajura, Bajhang, Lamjung, Gorkha, and Dhading districts seem to be hard to access markets with low food stock levels. Karnali Province has organized at least one airlift to Humla district and has plans for more in Mugu and Dolpa districts. According to MoFAGA, 'most affected households' based on criteria are: wage labors working in informal sectors, like in construction work, agriculture, transport services, porters in tourism and other sectors, garment industry, small trader, baby caretaker and deprived people with no caretakers (old age, disabled, pregnant, orphan, and people taking refuge in old age homes, monastery, church, temple, etc). In all mid-hill districts since the lockdown prices have increased by 30-60% on average in vegetable items in the market and limited items are available (Shrestha & Thapa, 2020).

2.2. Sustainable development Goal and Food Security

The Sustainable Development Goal to "End hunger, achieve food security and improved nutrition and promote sustainable agriculture" (SDG2) recognizes the interlinkages among supporting sustainable agriculture, empowering small farmers, promoting gender equality, ending rural poverty, ensuring healthy lifestyles, tackling climate change, and other issues addressed within the set of 17 Sustainable Development Goals in the Post-2015 Development Agenda.

Beyond adequate calories intake, proper nutrition has other dimensions that deserve attention, including micronutrient availability and healthy diets. Inadequate micronutrient intake of mothers and infants can have long-term developmental impacts. Unhealthy diets and lifestyles are closely linked to the growing incidence of non-communicable diseases in both developed and developing countries. Sustainable

development goals Nepal is committed to being part of the global Sustainable Development Agenda 2030 after a big lesson learned and encouraging achievements from MDGs. SDG 2 has major targets of ending hunger by 2030 and ensuring access by all people safe, nutritious, and sufficient food all year round, ending all forms of malnutrition, doubling agricultural productivity, ensuring sustainable food production systems, and maintaining by 2020 the genetic diversity of seeds, cultivated plants and farmed at the national, regional and international levels.

2.3. **Establishment of Food Banks**

The current scenario on global and national health and the economy is depressing due to the detrimental effect of the COVID-19 pandemic. The further effect of a pandemic can be seen in the economy and livelihood of people. As the country's main economy is backed up by an agriculture production system, the slowdown in the agriculture market system has further crashed the economy. Similar trends can be observed in the case of production due to the unavailability of inputs in time as well as the accessibility of food to the consumer is threatened. This has set an alarming signal presenting the inadequacy of food, food supply system, and food storage system. The most basic preparatory steps to be considered to deal with natural disasters and pandemics is the availability of indispensable needs like food, water, shelter, treatment, etc. For the significant allocation of food material during the needy time's concept of food bank was brought. The food bank works on the concept to accumulate the food and food reserves and distribute them to needy people. Agriculture experts and scientists of Nepal have established the National Food Bank Limited with an investment of Rs.2 billion to industrialize the agricultural sector of the country (www.investopaper.com/news/national-food-bank-in-nepal/). The food bank has been established to industrialize the agriculture sector in the near future by properly managing the necessary knowledge, skills, seeds, and fertilizers required for this sector. The bank has been established by skilled manpower, experts, and agricultural scientists working in the field of agriculture. The main objective of the organization is the marketing of the agriculture sector by making its presence in all 77 districts of the seven provinces. The bank is carrying out its plan to increase employment, increase production, and move the country towards self-reliance through big investments in agriculture. The bank will itself produce food grains, nuts, green vegetables, fruits, milk, yogurt, fish, meat, tea, herbs, and other food items. Moreover, the bank aims to cooperate with farmers across the country as well as with agricultural companies, cooperatives, groups, and all organizations related to the agricultural sector. The bank plans to produce agricultural products by renting unused land including private, government institutions and 'guthi' land. So far, the work of leasing the land and producing has started in Kailali, Kanchanpur, Bardiya, Jhapa, Morang, Sunsari, Dhanusha, Chitwan, Rupandehi, and other districts. The food bank, which is working with short-term, mid-term, and long-term objectives, has given priority to the production of paddy, wheat, maize, millet, potato, mustard, and nuts in the first phase. In the second phase, the production of fish, meat, fruits, milk, vegetables, etc. will be emphasized and in the third phase, these products will be exported to different countries by storing, processing, grading, and packaging.

2.4. Strengthening Agriculture Marketing and Ensuring Farmer's rights

Nepal, being, an agricultural country, has a really poor status on production and if production goes better there is a severe shortage of market for the production. The presence of a middleman, weak marketing channels, lack of public market facilities is the major drawbacks for the weak performance of the market system in Nepal. There is no appropriate development in the field of agriculture market to solve the issues on marketing, value addition of the food products, and the reasonable price for the producer.

For addressing the issues on market there is an immense need to develop a mechanism to link the farmers and producers to a market system that is sustainable, eco-friendly, and economically sound. Previously there is no marketing framework to support the production at the local and provincial levels. The concept to develop a marketing channel at the local and provincial level is to make local production available for local people at a reasonable price. The other objective is to make the agriculture market and agriculture economy of local level self-resilient and self-sustaining. Province level collaboration for the supply and distribution of the agriculture commodities that are sufficient and surplus in that province to another province. That will support marketing and value chain development of the specialized product that will be affordable, easy access, and sustainable. Coordination between local level bodies with nearby for assuring to develop a marketing channel to provide the agriculture products at a decent rate and build a common storage house on the private-public partnership can address the market-related problems of the farmer.

According to the Department of Customs statistics, cereal tops the list of agro imports followed by edible oil, vegetables, fruits and nuts, and seeds. The cereal import bill amounted to Rs56.88 billion, almost a fifth of the total agriculture import bill. Of the total cereal imports, rice accounts for Rs22.23 billion, and maize comes second with Rs14.75 billion. Imports of maize have been growing at an alarming rate and it's due to the demand for livestock feed. Besides, Nepal spends Rs15 billion on the imports of animal fodder alone. After cereals, the biggest import bill is for vegetable fats and oils which stands at Rs 50.24 billion, up from Rs 37.12 billion in the previous fiscal year. This data elaboration shows the dependency of the country on different edible commodities which is more inclined to India to fulfill the import demands. This is a quite serious situation so there is a need to address the problem and find out the alternate ways to reduce the huge dependency on imports. The current production pool is not that much worse to support the consumption of the country population but lack of proper allocation and distribution patterns the market is dominated by Indian products. As our production is not as commercial as India due to their massive production the production cost and marketing cost of the agricultural product is low which makes the market-dominant by import product than local production. The urgency shown by the government to eliminate the import dependency is not satisfactory. The creation of a production-based support system to enhance and promote the production of the major cereal and other food commodities and infrastructure support for promoting the market and value addition should have been the major agenda of the government to deal with the import dependency issues. The major drawback for the Nepalese market system is its inability to connect the rural market system to the urban market as well as promotion of local production from subsidies, transportation subsidies, etc. Thus the promotion of local production through the provision of inputs based on need-based assessment and development of marketing channels for more fluent supply, consumer-based market, and subside-based market system is the current need of the Nepalese market.

2.5. The Necessity of Food Inventory System

The existing scenario on food production, distribution and consumption system is not so praiseworthy. The recent wave of COVID-19 pandemic had further threatened the current status of food security in alarming rate. Likewise, disasters like flood, landslides etc. have seriously inhibited the food production and disrupted the supply chain. This series of calamities and pandemic have compelled the consumer to depend on minimum and less nutritious food supply and overall leading to food insecure situation. Preparedness for the situation with the establishment of food banks could be a great solution to deal with the havoc situation. But before the development and establishment of food bank there is a need for the assessment about the production, supply and consumption of particular locality. That leads to the necessity of a food inventory system. To define every elements and status on food supply chain system food balance sheet could be a great tool as it helps to assess the real scenario on food production, distribution and consumption. It further picturize the per capita supply and intake which could help to determine the exact status and help to plan the necessary strategy and recommend policies for secured food and nutrition supply.

The first attempts at preparing Food Balance Sheets date back to World War I. Food Balance Sheets (FBS) were the major source of data, especially in 1936, when the Mixed Committee of the League of Nations requested its Sub-Committee on Nutritional Statistics handling problems of nutrition to prepare a systematic international comparison of food consumption data.

During the Second World War, there was a considerable increase in the use of FBS. This prompted the Inter-Allied Committee on Post-War Requirements to use them in 1942/43 in their studies of post-war requirements in European countries. Germany constructed its own FBS as well as for its occupied territories. A detailed technique was developed and employed by a joint committee of experts from Canada, the United States of America, and the United Kingdom in the report, "Food consumption level in the United States of America, Canada, and the United Kingdom". FBS played an important role during food allocation and distribution in the period of worldwide food shortages after the war.

In 1948, during a Food and Agriculture Organisation (FAO) conference in Washington, FBS was given considerable importance owing to its usefulness in analyzing the food situation at the country level. It was recommended that FAO should develop, encourage and assist governments to develop and publish their FBS.

3. Justification of study

After the verification and study of different published papers and documents, no strong document was found addressing the current scenarios of food production, consumption, and distribution in Nepal especially those disaggregated at municipal level. Major documents from the MoALD have few published documents figuring the current scenario of self-sufficiency. The government has declared selfsufficiency in major livestock production albeit issues in the production and distribution in sustaining the self-sufficiency claim. The major aim for the construction of the food balance sheet is to draw the situation of production, consumption, and distribution within the locality and determine the status of food consumption as more self-sustaining or import-dependent.

The country is largely dependent in agriculture products due to lack of commercialization and use of the improved seed, fertilizer and crop protection measures have declined the production., the prevalence of disease outbreaks, lack of timely medication, scientific feed formulation, and adoption of high-performing breeds are the major problems while market i.e. distribution sector is poor in both agriculture and livestock production due to which even produced goods are not able to penetrate the market. All this problem has been timely recognized and likewise, solutions have been rendered but lack of proper implementation had led to minor upgrades. On the other side the agriculture system followed by our country and the data source proving it is not aligned well. Our agriculture data management system is poor since no aggregation of data is done from the local level to central government which has ultimately untracked the policy and plans oriented towards agriculture development. To vitalize the need for agriculture information and scenario on the production system, the construction of a food balance sheet will be a great approach to address the situation and determine either it is self-sufficient or import-dependent. Furthermore, the lack of blueprints related to trends of production, consumption, and distribution had led to serious drawbacks on effective plans and policymaking. The need assessment of a particular location in terms of agriculture production, consumption, and distribution could be fulfilled by imaging the context through the food balance sheet. Last year outbreak of the COVID-19 pandemic had challenged the food production, supply and distribution system that have threatened food and nutritional security. Similarly, different havoc conditions like natural calamities, a disease outbreak in crops have led to hazardous effects in production and consumption pitching towards food and nutritional insecurity. The occurrence of different disasters and uncertainties on climatic conditions have highlighted the preparedness for the worst situation. This could be only assured through proper planning and policymaking to demarcate the weak situations in the production of different commodities and ending its insecurity leading to preparation for self-sufficiency. Like-wise if the production of a certain commodity cannot be assured then importdependent commodities should be imported sustainably and at a minimum price with good quality within the country and different local level governments. Construction of food balance sheet could visualize the actuality of the situation on agriculture production, supply, and consumption system. Majorly for the municipal areas where there is food insecurity and less production, the local government can plan an extensive farming-based program with a subside-based budget for the active participation of the locals. That could create new employment opportunities and increase the production of food commodities. Local-level strategy for planning food security could be done as recommended by food balance sheet majorly working on the limitation on production of edible commodities, production-based problem and as a whole maintaining a continuous market chain with inter-municipal bodies to overcome the less production and promote the import locally on reasonable price. Promotion of local food production to a business level and planning on value aid up of the produced material could provide employment and stabilize the income generation. The information on agriculture able area, area on public ownership, and other public lands could be obtained through food balance sheet. The land on public ownership could be utilized and provided under lease for commercial vegetable or agriculture farming. The support on local and provincial levels for the commercial farm could be financially increased to ensure the bumper production that could feed the local people at the local level.

Thus, the construction of a food balance sheet aims to intervene in the policy and planning on agriculture production through visualizing the facts of the agriculture system so that effective anchorage can be provided to different elements based on their present performance.

4. Methods and Methodology

4.1. Selection of study area

The study area was Bharatpur ward 14 of Bharatpur Metropolitan, Chitwan of Bagmati Province, Gaindakot Municipality, Devchuli Municipality, Bulingtar and Binaye Triveni Rural Municipality, Nawalpur of Gandaki Province. The selection of the municipal bodies of Nawlapur district was to picturize the scenario of trends on production and consumption so that in future for total results district can self-lunch program yearly to draw the situation and take steps accordingly for amplifying the status of production and consumption. This program will be a pilot approach for the local municipal bodies and Nawalpur district for budget-based construction of food balance sheets yearly both in policy and its outcomes in the field.

4.2. Implementation arrangements

For the implementation and construction of food balance, a four-member working staff was created under the management of the project manager where the data collection formats and data processing was done by a data analyst and further documentation and logistic support were carried by two facilitators. The consent for constructing the food balance sheet of the respected municipality was taken and all the major activities were conducted under the supervision of the Mayor. Continuous follow-up and communication with Mayor and agri-officials were carried out. For the introduction and orientation about the food balance sheet and its working modality inception meeting was carried out. The inception meeting was chaired by the Mayor in the presence of vice-mayor, ward president, and agriculture & livestock depart officials. Quarterly meeting with experts, monthly meeting with project advisor, and weekly-based updates and communication was with local stakeholders. Due to lack of secondary data primary data collection was carried out which was supported by an agri-technician of the ward. The data obtained from the ward was triangulated by focus group discussion and processed by data analyst and produced a concrete outcome. The major lead farmers involved in different agriculture cooperatives were major participants of FGD. Respective municipal officials from the agriculture and livestock department facilitated and supervised the focus group discussion. The output data was validated under the presence of municipal level stakeholders and further, the data was verified by the project advisor and experts. The major insights of the experts were taken in terms of data calculation and associated methodology. The data validation meeting conducted at the municipal level allowed reviewing the data and amending the correction to be needed that will be compiled in the final report.

4.3. Major Elements of Food Balance Sheet

The major components of FBS are as follows

a. Supply

The major supply of food is sourced from production, import, export and stocks.

b. Utilization

It refers to the total amount of commodity consumed. The consumption may be seed, feed, food and industrial uses.

c. Per Capita Food Supply

It refers to the total calorie, protein and fat supplied from the total food consumed.

Total Production

It refers to the total production of a particular commodity in a particular location over a particular time. Total Production was calculated with the average data productivity of a particular commodity and total cropped area. The total cropped area was calculated by multiplying the adoption percentage with the total agriculture area. If the total cropped area was not present then average household production was multiplied with total household producing the commodity.

Total Production (qt)= Average productivity (qt/kattha) × Total cropped area (kattha)

Total Import

Total import refers to the total product purchased from another territary to a given territary. Total import was calculated by the total import recorded by the major importers and wholesalers bought from other places than within the municipality. Commodities with not major imports were calculated by multiplying the average quantity of imports and total household involvement in imports.

Total Import (qt)= Average quantity of import per household (qt)× Total importing household

Total Export

Total export is defined as goods sold to another country or transboundary. Total export was calculated by total commodity exported outside the ward through major vendors or directly by producers. Further unrecorded export quantity was calculated by multiplying the average quantity of export per household and total household involved in export.

Total export (qt)= Average quantity of export per household (qt) × Total exporting household

Total Feed

Feed is defined as all quantities of commodities—both domestically produced and imported—that are available for feeding livestock or poultry. The total feed is calculated by the average feed consumed in the household following subsistence livestock rearing multiplied by the total household involved in animal husbandry. Feed consumption in commercial animal husbandry was more due to which it was added as average feed consumed per animal per shed multiplied by the total commercial shed and total animal.

Total feed (qt)= Feed required in subsistence animal husbandry + Feed required in commercial animal husbandry

Feed required in subsistence animal husbandry (qt)= Average quantity of feed per household (qt)× Total household doing subsistence animal husbandry

Feed required in commercial animal husbandry (qt)= Average quantity of feed per commercial household (qt) × Total household doing commercial animal husbandry

Total Seed

Seed is defined as a miniature plant consisting of reserved food material and seed coat. Seed is considered as a progeny for the continuation of another plant life cycle. The total seed was calculated by multiplying the seed rate as recommended by the government of Nepal and the total cropped area.

Total Seed (qt)= Seed rate (qt/kattha) × Total cropped area

Total Waste

Total waste is defined as the quantity of products that don't pass through the supply chain. Loss may be considered as food loss and food waste. The amount of produce that is lost through the post-harvest, processing loss, and other loss before reaching to plate is called food loss. The amount of food that is lost after serving on the plate is called food waste.

The total waste was assumed as the total waste during the post-harvest and processing loss and the waste after the food is served. The total waste for the different types of the commodity was different by the durability and storability.

Total Waste (qt)= Total food waste +Total food Loss.

Total Waste (qt) = Average food waste/loss $\% \times$ Total production (qt)

Total Food

Total food was calculated by eliminating the exports, wastages, feed use and seed use from the total production.

4.4. Working Model of Food Balance Sheet

The working equation or model of food balance was;

Production + Imports = Exports + Feed + Seed + Waste + Food + Stocks

Self-sufficiency Ratio

Self-Sufficiency Ratio (SSR) is the ratio that shows to determines whether a particular locality has sufficient local production for local consumption. It is the ratio of production to the sum of production plus import minus export and multiplied by 100. A ratio of less than 100 percent indicates the inadequacy of food production to cope with the demand of the population; equal to 100 percent indicates that food production capacity of the sector is just enough to support the food needs of the population; a ratio of greater than 100 percent indicates that domestic production is more than enough to support the domestic requirements, the higher the ratio the greater the self-sufficiency.

$$SSR = \frac{Total\ Production}{Total\ Production + Total\ Import - Total\ Export} \times 100$$

Import Dependency Ratio

Import dependency ratio (IDR) is the extent of dependency on importation to domestic consumption. It is the ratio of quantity imported to the sum of production plus import minus export and multiplied by 100. The higher ratio implies a greater dependency on importation.

4.5. Primary Data Collection

Both the primary and secondary data were used to construct the Food Balance Sheet. Due to the limited availability of secondary data, the need for primary data collection was taken into consideration. Different sources for secondary data were explored like Agriculture and Livestock department of respective Palikas, Agriculture Knowledge Center, Veterinary Hospital and Livestock Service Expert Center, Central Bureau of Statistics, etc., and also from, pocket, block, zone offices, etc. Data related to population, land size, productivity will be relied on secondary sources, whereas utilization patterns like consumption, livestock feed, etc. along with information of export will be collected from primary data collection sources.

With limited resources and lack of time, Primary data collection was done by household survey Stratified sampling was done to picture the differentiation in agriculture adoption patterns. To capture the actual scenario of agriculture production, consumption, and market within the distributed population, objective-based verified and identified households were taken as a sample. Agriculture households based on landholding and amount of production were classified based on data available from the agriculture department of the related municipality. The major strata for sampling were high-scale, mid-scale, and small-scale farmer households and were defined as stratified sampling. As along with that association of household with the major agriculture group and cooperatives, different members were taken based on defined strata so that actual scenarios within the different agriculture groups and cooperatives could be analyzed. With the limited no of households taken, the maximum effort was done to recognize the household that could be representative of the total members of the cooperatives within three different strata. The data was accumulated by the answers of the respondent from the structured questionnaire. Major data associated with consumption was accumulated by primary data collection while the cropping area, cropping patterns, production, and productivity were obtained by secondary data collection.

Furthermore, focus group discussion with the board members of different cooperatives and farmers groups was done for further validation and triangulation on the consumption and production patterns. Also, a validation workshop with the mayor, vice-mayor, ward chairpersons, agriculture and livestock officials was organized to validate and endorse the collected data.

4.6. Data Sources

Various sources of data were used to find out the secondary data and different methodological approach like primary data collection was also done to calculate data that were not available in the secondary

database. As we know well about the data management system of our country which is insufficient to construct the complete food balance sheet. So various methods were used to extract data i.e. both primary and secondary data. Secondary data on production was obtained through the agriculture knowledge center, agriculture service center, agriculture department of the municipality, zone office, and documents referring from the previous District agriculture development office.

Crop Production Data: The crop production data of the recent year was not available due to which a major portion of it was obtained through primary data collection. Crop production was calculated by multiplying cropped area and average productivity. Average productivity was calculated from the primary data collected from sample households. For the total production of a low adopting crop, production is calculated by multiplying average productivity, coefficient of a household adopting the practices, and total household.

Trade Data: Trade-based data that includes export and import were obtained from ward profile data and agriculture and livestock service center. Products with minimum import or export were calculated based on the average import or export multiplied with the coefficient of household doing import/export and total household.

Livestock Data: Livestock data was majorly obtained from ward profile, district livestock services office, and livestock department of the municipality. Lacking data on livestock production was obtained from primary data collection.

Seed Data: Data on the amount of a certain food commodity used as the seed was calculated by multiplying the standard seed rate provided by agriculture information and training center and total cropped area. With the use of different hybrids seed replacement rate was also taken into account.

Feed Data: Major portion of the total feed used was obtained by household survey while the remaining was obtained from wholesale feed suppliers.

Data on Loss: Total loss was calculated based on the average loss percentage of cereals, vegetables, pulses, oilseeds, fruits, and animal products that includes both food loss and food waste out of total production.

Tourism Data: Tourism-based consumption was calculated by the household-based survey in the food service providers in the major tourist location.

5. Result and Discussion

The topic discusses the overall result of FBS among several municipal bodies of Bagmati and Gandaki province of Nepal.

5.1. **Self-sufficiency Ratio**

Cereals and pulses were found to be self-sufficient in all municipal bodies in Bharatpur 14 while it was not self-sufficient in all other municipal bodies. Vegetables and fruits were found to be insufficient in all municipal bodies while animal products were self-sufficient in all municipal bodies except Devchuli and Bulingtar. In Bharatpur 14, animal products were found to be almost three times more self-sufficient.

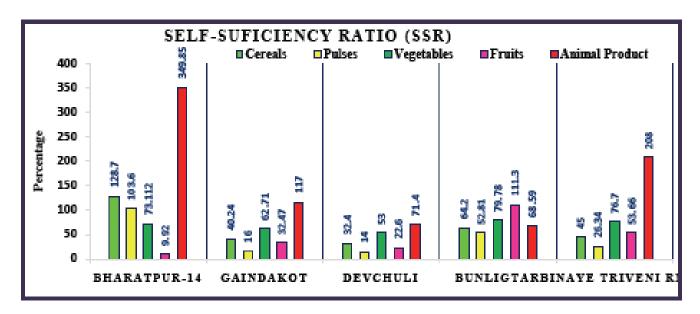


Fig1: Self-Sufficiency ratio of different municipal bodies

5.2. **Import Dependency Ratio**

The maximum import dependency in cereals was observed in Devchuli municipality which was followed by Gaindakot municipality while minimum import was observed in Bharatpur 14. Major import in pulses was observed in Gaindakot municipality while minimum import was seen in Bharatpur 14. Similarly, vegetables were found to be imported in maximum quantity in Devchuli municipality and were imported in a minimum amount in Gaindakot municipality.

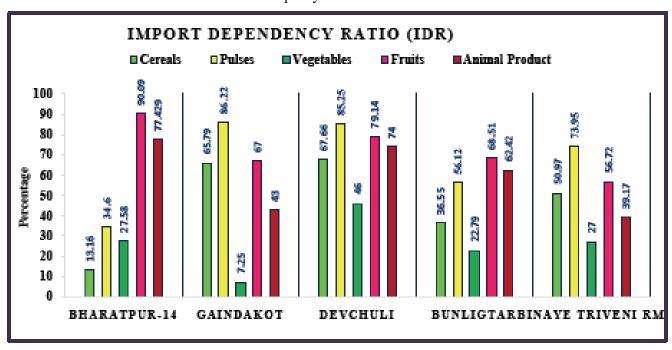


Fig 2: Import Dependency ratio of different municipal bodies

Maximum import on fruits was observed in every municipal body and the food group was imported in a maximum amount in Bharatpur 14. In addition to this, animal products were imported in a maximum amount in Devchuli municipality and were least imported in Binayee Triveni rural municipality.

5.3. **Total Calorie Requirement**

The total calorie attained was higher compared to the total calorie required by population in all the municipal bodies except Bharatpur 14. In Bharatpur 14, it was found that the total calorie attained was slightly less than the total calorie required. It might be due to less affordability of food among vulnerable and underprivileged populations residing in the ward.

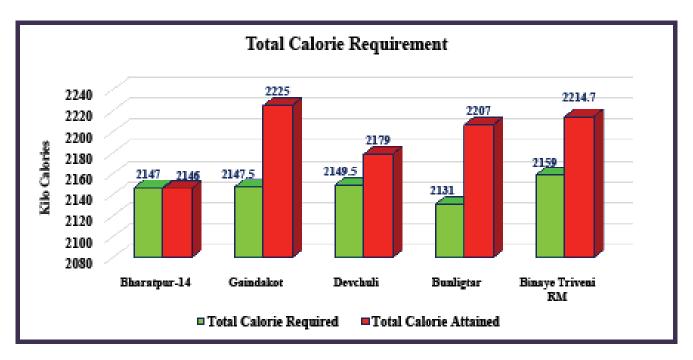


Fig 3: Total calorie requirement and attained in different municipal bodies

5.4. Calorie supplied by different food groups

Total calorie supplied by cereals was found to be maximum while fruits supplied minimum amount of calories in all municipal bodies. The amount of calories supplied by cereals was found to be maximum in Bulingtar rural municipality while it was minimum in the case of Gaindakot municipality. Similarly, the amount of calories supplied by pulses was found to be maximum in Bianyee Triveni rural municipality while it was minimum in the case of Bulingtar rural municipality. In addition to this, the amount of calories supplied by vegetables was found to be maximum in Gaindakot municipality and the minimum calories were supplied by vegetables in Binayee Triveni rural municipality. Fruits supplied maximum calories in Gaindakot municipality and the amount of calories supplied by fruits was minimum in Binayee Triveni rural municipality. Also, animal products supplied maximum calories in Binayee Triveni rural municipality and the products supplied minimum calories in Bulingtar rural municipality.

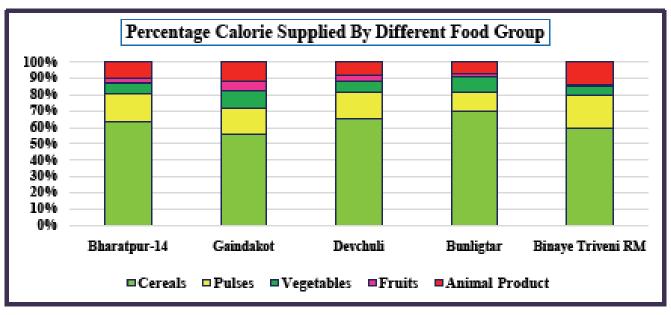


Fig 4: Percentage calorie supplied by different food groups

5.5. Protein supplied by different food groups

It was found that in all municipal bodies protein supplied by cereals was found to be maximum except Gaindakot municipality while fruits supplied minimum amount of protein. The amount of protein supplied by cereals was found to be maximum in Bulingtar rural municipality and Bharatpur 14 while

it was minimum in the case of Gaindakot municipality. Similarly, the amount of protein supplied by pulses was found to be maximum in Devchuli municipality while in the case of Binayee Triveni rural municipality, the amount of protein supplied by pulses was found to be minimum.

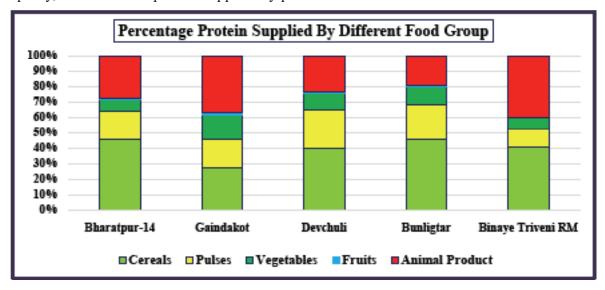


Fig 5: Percentage protein supplied by different food group

In addition to this, the amount of protein supplied by vegetables was found to be maximum in Gaindakot municipality and the minimum protein was supplied by vegetables in Binayee Triveni rural municipality. Fruits supplied maximum protein in Gaindakot municipality and the amount of protein supplied by fruits was minimum in Binayee Triveni rural municipality. Also, animal products supplied maximum protein in Binayee Triveni rural municipality and the products supplied minimum protein in Bulingtar rural municipality.

5.6. Fat supplied by different food groups

It was found that in all municipal bodies fat supplied by animal products was found to be maximum except Develuli municipality where pulses supplied maximum fat while fruits supplied minimum amount of fat. The amount of fat supplied by cereals was found to be maximum in Bulingtar rural municipality while it was minimum in the case of Gaindakot municipality. Similarly, the amount of fat supplied by pulses was found to be maximum in Devchuli municipality while in the case of Binayee Triveni rural municipality, the amount of fat supplied by pulses was found to be minimum. In addition to this, the amount of fat supplied by vegetables was found to be maximum in Bulingtar rural municipality and the minimum fat was supplied by vegetables in Gaindakot and Devchuli municipalities. Fruits supplied maximum fat in Develuli municipality and Bulingtar rural municipality and the amount of fat supplied by fruits was minimum in Binayee Triveni rural municipality. Also, animal products supplied the maximum amount of fat in Binayee Triveni rural municipality and the products supplied the minimum amount of fat in Devchuli municipality.

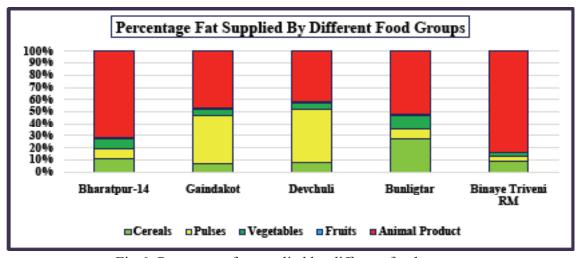


Fig 6: Percentage fat supplied by different food groups

5.7. Dietary supply of Cereals

It was found that paddy provided the maximum dietary supply in cereals in all municipal bodies. It was wheat that provided maximum dietary supply after paddy in all municipal bodies except Bulingtar rural municipality, where maize followed paddy. Similarly, the amount of dietary supply by maize was maximum in Gaindakot municipality and it was least in Devchuli municipality. There was some contribution of millet in all municipal bodies except Bharatpur 14. The amount of dietary supply by millet was maximum in Bulingtar rural municipality while it was least in Binayee Triveni rural municipality. It was found that barley also contributed to dietary supply in Binayee Triveni rural municipality.

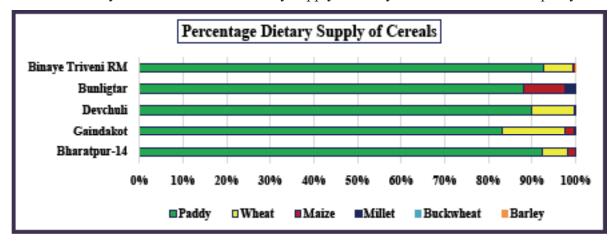


Fig 7: Percentage dietary supply of cereals

5.8. Dietary supply of pulses

In pulses, beans provided maximum dietary supply in Bulingtar rural municipality while beans provided minimum dietary supply in Gaindakot municipality. Similarly, Soybean provided maximum dietary supply in Bharatpur 14 while it provided minimum dietary supply in Devchuli municipality. In addition to this, lentils provided maximum dietary supply in Gaindakot municipality and the dietary supply was found to be least in Bulingtar rural municipality. Kidney beans provided dietary supply in all municipal bodies except Bulingtar rural municipality. Chickpea was found to be the maximum consumed as pulses in Gaindakot municipality while it was found to be least consumed in Bulingtar rural municipality. Pea was found to be mostly consumed as pulse in Devchuli municipality and it was least consumed in Bharatpur 14. Pigeon pea was found to be consumed as pulse in Binayee Triveni rural municipality and Horse gram was found to be consumed as pulse in Gaindakot municipality. Black gram was found to be consumed in significant amounts as pulse in all municipal bodies except Bharatpur 14 and it was found to be mostly consumed in Bulingtar rural municipality and was least consumed in Binayee Triveni rural municipality.

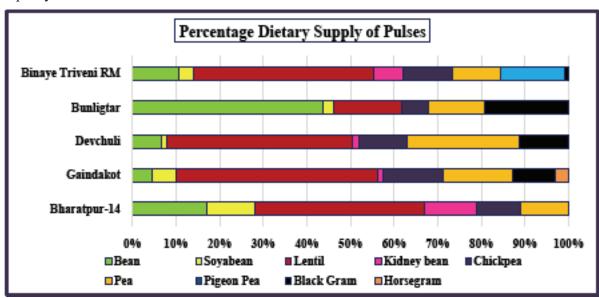


Fig 8: Percentage dietary supply of pulses

5.9. Dietary supply of meat

Taking an account of consumption of meat in different municipal bodies, Chicken was found to be mostly consumed meat-type except in Gaindakot municipality where buff was popular. Chicken was mostly consumed in Bharatpur 14 while it was least consumed in Gaindakot municipality. Mutton was found to be mostly consumed in Gaindakot municipality while it was found to be least consumed in Devchuli municipality.

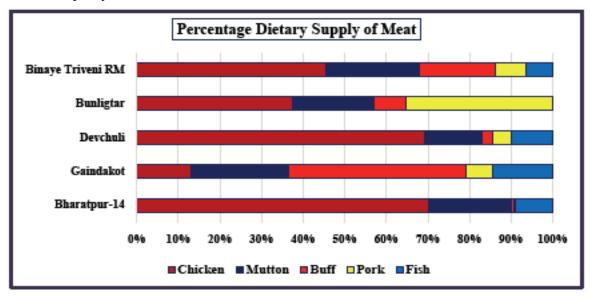


Fig 9: Percentage dietary supply of meat

Buff provided maximum dietary supply in Gaindakot municipality while it provided least dietary supply in Bharatpur 14. Pork was mostly consumed in Bulingtar rural municipality and it was least consumed in Bharatpur 14. Similarly, fish was least consumed in Binayee Triveni rural municipality while it was mostly consumed in Gaindakot municipality.

Dietary supply by different food groups **5.10.**

In all municipal bodies, the major dietary contribution was done by cereals and it was found to be maximum in Bharatpur 14 while the least dietary supply by cereals was found in Gaindakot municipality. Similarly, pulses provided maximum dietary supply in Devchuli municipality while the food group provided the least dietary supply in Gaindakot municipality. In vegetables, the amount of dietary supply was found to be maximum in Bulingtar rural municipality while it was found to be minimum in Bharatpur 14. Taking an account of fruits, it was found that the amount of dietary supply by fruits was found to be maximum in Gaindakot municipality while the dietary supply by fruits was found to be minimum in Bulingtar rural municipality. In addition to this, the amount of dietary supply by animal products was found to be maximum in Binayee Triveni rural municipality while it was supplied in the least in Bulingtar rural municipality.

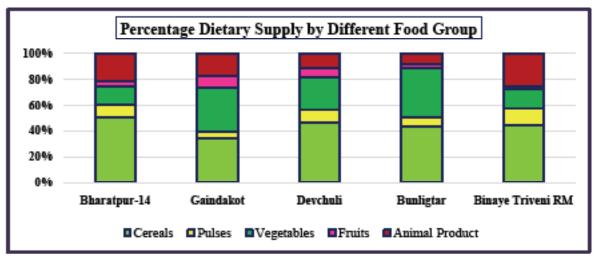


Fig 10: Percentage dietary supply of different food groups

7. Challenges and Limitations

The most prominent challenge was to acquire data related to production, import, export and consumption from secondary sources. Lack of digital data set further led to the compulsion for taking primary data. It was assumed that enough secondary data was present for the construction of the food balance sheet but later due to lack of data primary data collection was done. Like-wise data related to stocks were not present as the total stock was not under the governmental agencies and had an open market that enabled the consumers to buy and consume when needed. The transaction within two municipal areas was not recorded and trans boundary import and export of goods were much frequent due to which it was difficult to calculate. As earlier food balance sheet was assumed to be constructed using secondary data but later primary data collection was also done. Due to the limited resources for primary data collection vibrant sampling couldn't be done.

Further limitations of the study were it figured out last year's trends and gave no regard to the present production trend. A holistic scenario on present conditions and reasons for it could not be achieved as it lags to clear why and how the trends increase or decrease in terms of production and consumption Commodity majorly used in consumption was used but those which support in the economy were not much prioritized like the spice crop, cash crop, etc. Along with the locality and different patterns of consumption, consumption in form of beverages and other alcoholic stuff is not recorded. As our ethnical variation suggests the variation of consumption of alcoholic substances produced from the local product so it should be kept on a note to report it on FBS as it also acts as a source of energy. The Standard Technical Conversion Factors were used to generate Food Balance Sheet following global standards but it would have been more precise if local standards were used. There is a need to get the most updated country-specific conversion factors to improve the quality of the FBS generated.

7. Lesson Learnt

The construction of FBS has comprised of many data related to different aspects of the agriculture system including primary source of data. Different governmental sources and agencies were kept in close contact for the data accumulation but certain differences were seen in the process and kept in concern that could help for the construction of more fine and well oriented FBS. The major lessons learned are:

Data backup and data sourcing 7.1.

The data relating to the whole agriculture system is much poor so there is a regular need to update the data related to agriculture and livestock at the local level which keeps records and trend analysis of the current and previous scenario. The construction of FBS had facilitated us to consult and coordinate with local bodies, the district knowledge center, agriculture and livestock service center. The concept of FBS has further made clear to local government for frequent update and upload of data related to agriculture production and consumption

7.2. The urgency of implementation of Food Balance Sheet

The real need and concerned outcomes of FBS have highlighted its importance on policy and planning for local government bodies. Our approach towards the construction of FBS has made a great realization to the local government for yearly construction of FBS. This had been a great responsibility of us communicating with every local government about the need of FBS for policy and planning regulation of local bodies.

Documentation of diversified food production and consumption 7.3.

FBS has observed the different food habits of different local bodies under ethnicity, caste, sex, religion, ecological niche, etc. But variation in food in the served plate is not quite impressive. Under diversified production, there is no diversified consumption within a particular locality in terms of nutrients like protein, fat, vitamin, calories resulting unbalanced diet. So, it will be a great scope of FBS in the near future if it can incorporate the diversified food consumption factor. It will help to address the need for a balanced diet and the need for a change of food habits.

8. Way Forward/Recommendations

The major components of the agriculture system are production, distribution and consumption. With regards to production, distribution and consumption different governmental and non-governmental organization have been working intensively to uplift the status for making self-sustaining, marketfriendly, and secured food and nutrition. Like-wise through different agencies, there is vast input in the agriculture system but there is no efficient mechanism to evaluate whether the input had increased or decreased or have no effect on different components. For analyzing and evaluating the scenario food balance sheet had been a great tool. It simply states the condition of production, imports, exports, feed, seed, stocks, waste, total consumption and total uptake. This simply takes into account from production to consumption so that efforts and effects of major inputs applied at different levels could be evaluated. FBS also draws the recent context on production, distribution and consumption system. This will be a great tool for the local level to determine their position in terms of self-sustainability and import dependency. Local government bodies can set plans and policies to address the concerning issues to form a resilient food ecosystem. FBS could be a great tool for all local bodies all over the country which could analyze the current situation at the local level and take steps accordingly. Thus, the government can reform the situation on the micro-level and overall leap forward in terms of food and nutrition security.

Currently, the major issue in our country is low production that has threatened food and nutritional security. The concern is not up to food and nutritional security as those who are food secure do not have diversified food habits leading to malnutrition and an unbalanced diet. It is a major concern that has to be addressed as soon as possible before any havoc condition arises. Government stakeholders and other concerned agencies should discuss the terms and conditions on which they can assure food and a nutritional secure state. Sidewise promotion and priority on diversified food intake should be done with change on food habit. Nepalese have much more dependence on cereals for energy due to which major import and consumption is concerned towards cereals. National debates should be carried out to change the food habit so that people can be aware of a balanced diet and diversified food habits. It will further enhance the underexploited and underutilized food crops that grow at the local level. It is now how we count on the food crops it is just how we achieve food security either by the imported food crops or with the indigenous food crops, the choice is ours. That is why a serious debate should penetrate the agriculture system to sustain our production with the adoption of underutilized food crops and use of improved varieties as well as acquiring balance and nutrient-rich diet through diverse food consumption.

Recent progress to resolve issues related to food and nutrient security is the initiation for the development of food banks. Our country had been hit hard by natural disasters and disease outbreaks over the last decade which has raised a thoughtful concern for a secured source of food and nutrition in these conditions. The issues related to malnutrition, unbalanced diet, and lack of diversified food products have been raised in these difficult conditions. The concept of a food bank is a great approach for preparedness during disasters and conditions like covid-19. The development of food banks in association with SAARC countries could help during the distress caused by pandemics and calamities. The concept of a food bank suggests its direct supply of food materials that may be raw or processed to the needy ones during hard times. FBS tool could help various countries to contribute to other needy countries in accordance with their surplus production and total demand of the needy country. Thus, FBS helps food banks to synchronize and develop harmony in supply and demand within the supplier and consumer and helps to fight against difficulties with the smart act.

9. Conclusion

In the present condition with the increasing population and occurrence of different types of disasters, pandemics, and disease outbreaks there is the biggest threat over food security and optimum supply of nutrients to every individual. Even use of specialized types of machinery, hybrid and improved seeds, fertilizers are not able to sufficiently provide food and nutrition to the population. Particularly in developing countries, the situation is much worse. Lack of concise data on the amount of production, supply, demand, and consumption have made them stand in the middle of nowhere for designing policy and plan to deal with the situation. To deal with such a situation development of the FBS tool was done to minimize the error in planning and policy-making which helped to recognize the attributes to be focused on for optimum food production and distribution. Further, it was supposed to help to determine the general patterns of food habits so that production or import could be facilitated.

In the total study areas, the animal product was found to be more self-sufficient while in Bulingtar RM

the fruit production was found to be self-sufficient. While the import dependency was majorly observed in pulses, fruits, and a bit less on cereals. This shows that major production is oriented towards cereal, vegetable, and animal production. Likewise, poor diversified food habits had led to less priority in the production of fruits and pulses. The total calorie requirement to the total calorie acquired is satisfactory in all municipal bodies where all populations are supplied with the full amount of required calorie. But due to the presence of many ultra-poor and underprivileged groups in Bharatpur-14, the total acquired calorie was a bit less. Majorly the calorie and protein requirement was fulfilled by cereals and legumes while the major fat was supplied by the animal source. The majority of the dietary supply of cereal was covered by paddy, dietary supply of pulses by lentil and bean, dietary supply of animal source by chicken meat. The percentage of dietary supply by different food groups was majorly dominated by cereals followed by vegetables, animal sources, pulses, and fruits.

The construction of FBS to picturize the real status of agriculture production, distribution, and consumption system have derived fruitful agendas that would be a milestone for local government planning and policy-making for declaring local municipal level as food sufficient as well making strategies for local import. FBS has further shown the way out for developing sustainable agriculture production and a resilient economy. Determining standards of production, the status of the supply system, and patterns of consumption by FBS have facilitated the prediction of the future of food production and food habits. Food balance sheet could help in the establishment of food banks after assessing the status food supply system and could further recommend for strengthening the high risk factor on production, supply and consumption. Food balance sheet could analyze the patterns of food consumption and food habit that could help to create balance between production and consumption. Thus use of food balance sheet as food inventory tool in policy planning could help in strengthening the major elements of food supply system and minimize the threats of food insecurity.

10. References

- a. Food-based dietary guidelines for Nepalese (2004) (revised 2012). http://www.fao.org/nutrition/ education/food-dietary-guidelines/regions/countries/nepal/en/
- b. Kenya National Bureau of Statistics (May 2019), Enhanced Food Balance Sheets for Kenya 2014-2018 Results. https://www.afdb.org/en/documents/food-balance-sheets-kenya-2014-2018-results
- c. Philippine Statistics Authority, 2015-2017 Food Balance Sheets of the Philippines. https://psa.gov. ph/sites/default/files/2015-2017%20FBS%20Report 1.pdf
- d. Ministry of Agriculture and Livestock Department, https://www.moald.gov.np/
- The Food Security Atlas of Nepal, https://www.npc.gov.np/images/category/Food Security Atlas 2019.pdf
- f. Central Bureau of Statistics Nepal, https://www.npc.gov.np/en/page/99/department/central bureau of statistics cbs
- Ward profile of Bharatpur Sub metropolitan city.
- Annual Report (2076-2077), Agriculture Knowledge Center, Tanahun, https://tanahun.akc.gov.np/
- Final report (2075/2077), Bharatpur Metropolitan City https://bharatpurmun.gov.np/en/annualprogress-report

11. Annex

Status of Cereals in several municipal bodies.

Bharatpur 14

Cereal Crop

									Self-
	Total	Total	Total	Total	Total			Import	Sufficiency
Cereal	Production	Export	Import	Waste	Feed	Total	Total	Dependency	Ratio
Crop	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	Seed (qt.)	Food (qt.)	Ratio (IDR)	(SSR)
Paddy	53077.12	21645.89	1024.235	5307.712	797.568	523.9133	31491	3.787	196.262
Wheat	1429.27	301.1269	582.4409	142.927	24.39945	250.2524	1293.005	34.04924	83.55451
Maize	7120.417	539.7405	111.2432	1068.062	5096.8	81.41249	445.6444	1.662351	106.4032
Potato	2273.324	152.4737	1342.041	227.3324		0	3235.559	38.75492	65.64815
Barley	0	0	0	0	0	0	0	0	0

Bulingtar Rural municipality

Cereal Crop

	Total	Total	Total	Total	Total	Total	Total	Import	Self-
Cereal	Production	Export	Import	Waste	Feed	Seed	Food	Dependency	Sufficiency
Crop	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	Ratio(IDR)	Ratio(SSR)
Paddy	37348.83	571.80	11573.75	7469.766	433.1439	501.2606	39946.61	23.93	77.24
Wheat	99.99	18.9	539.87	503.64	12.2132	9.2274	108.0926	86.94119	16.10249
Maize	19155.79	143.2318	1048.327	3831.158	11493.47	526.37	4209.883	5.225727	95.48826
Potato	1733.27	23.6082	3071.298	670.7649	0	0	4110.195	64.2402	36.2536
Millet	3720.527	12.2679	92.6463	744.1054	1860.264	14.597	1181.94	2.43748	97.88528

Gaindakot municipality

								Import	Self
	Total	Total	Total	Total		Total		Dependency	Sufficiency
	Production	Export	Import	Waste	Total	Seed	Total Food	Ratio (IDR)	Ratio (SSR)
Crops	(qt)	(qt)	(qt)	(qt)	Feed (qt)	(qt)	(qt)	(%)	(%)
Paddy	121242.604	7132.198	11248.14	2990.388	1155.385	1024.5	120188.2741	8.972775	96.71666
Wheat	207.248942	25.9255	19732.66	10.11375	76.21803	17.097	19810.55866	99.08947	1.04072
Maize	62883.27	13570	43627.3	12576.65	76780.4	520.9	3062.5	46.94	67.65
Millet	76.54	21.11	483.6	6.9	0	0.7	531.4387016	89.71678	14.1994
Potato	3126.27	38.97	21242.5	312.63	0.58	0	24016.59911	87.31061	12.84956

Devchuli municipality

								Import	Self
	Total	Total	Total					Dependency	Sufficiency
	production	Municipal	Municipal	Total Waste	Total Feed	Total Seed	Total	Ratio (IDR)	Ratio (SSR)
Crops	(qt)	export (qt)	import (qt)	(qt)	(qt)	(qt)	Food (qt)	(%)	(%)
Paddy	69536.859	95.1647014	35275.8578	6953.686	68.854523	883.58867	96811.4	33.6867	66.4042
Wheat	292.5250219	5.84118355	9353.7656	29.25250219	0.8499421	111.509361	9498.838	97.02624	3.03435

Maize	12786.18387	31.92068163	1071.951034	1917.92758	11401.028	369.665327	137.5937	7.753034	92.47784
Millet	0.078259487		124.4731497	0.007043354		0.03607852	124.5083	99.93717	0.062833
Buckwheat	0.000444925		2.029453528	4.44925E-05	0.0010841	0.00184431	2.026926	99.97808	0.021919

Binayee Triveni Rural municipality

	Total								
Crops	production (Qt)	Total Export (Qt)	Total import (Qt)	Total Waste (Qt)	Total Feed (Qt)	Total Seed (Qt)	Total Food (Qt)	IDR (%)	SSR (%)
1	/							()	· /
Paddy	91574.00115	640.0454955	2791.75309	9157.400115	12316.62756	1437.540215	70814.14086	2.978642	97.7042504
Wheat	183.9503098	0.428677686	5131.406	18.39503098	15.6110124	52.13338814	5228.788201	96.54705	3.4610125
Maize	20815.25134	22.282751	1543.238352	3122.287701	18462.04779	406.3988306	345.4726206	6.909133	93.1906272
Millet	0.669564374	0.285785124	55.63879132	0.060260794		0.466286557	55.49602322	99.31496	1.19516896
Barley	0.000245975		359.5631841	0.0000245975	357.2114	0.006746274	2.345259183	99.99993	0.000068409
Sugarcane	20252.80097	13840.94813	6.255836364	2025.280097			4392.828584	0.097472	315.557152

Status of Pulses & Oilseed in several municipal bodies

Bharatpur 14

	Total	Total	Total		Total	Total	Total	Import	Self-
Pulses/Oil	Production	Export	Import	Total	Feed	Seed	Food	Dependency	Sufficiency
Seed Crop	(qt.)	(qt.)	(qt.)	Waste (qt.)	(qt.)	(qt.)	(qt.)	Ratio(IDR)	Ratio(SSR)
Cowpea	203.6317	30.5808	67.36285	20.363174	0	10.6379	209.4127	28.01955	84.70052
Chickpea	0	0	186.0775	0	0	0	186.0775	100	0
Kidney-bean	1623.56	1166.724	1.845928	162.35597	0	72.63271	223.6929	0.402442	353.9622
Lentil	444.6233	2.19384	367.6344	23.031487	0	45.97411	741.0583	45.38338	54.88744
Soybean	225.4906	0.6648	5.411871	22.54906	0	5.77869	201.9099	2.350558	97.93819
Bean	326.6001	0	29.00655	32.660008	0	4.252605	318.694	8.156921	91.84308
Rapeseed	1051.925	6.648	1464.786	54.489694	0	27.23966	2428.333	58.35656	41.9083

Bulingtar rural municipalaity

	Total	Total	Total	Total	Total	Total	Total	Import	Self-
Pulses/Oil	Production	Export	Import	Waste	Feed	Seed	Food	Dependency	Sufficiency
Seed Crop	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	Ratio (IDR)	Ratio (SSR)
Cowpea	761.072	14.319	220.7802	53.9327	0	53.66	859.9405	22.81888	78.66107
Chickpea	0	0	407.5352	0	0	0	407.5352	100	0
Black Gram	1327.55	1.0284	35.208	37.08966	0	55.93	1268.71	2.585535	97.48999
Lentil	122.3525	0	963.8786	43.71077	0	8.86	1033.66	88.73605	11.26395
Soybean	298.98	216.945	275.7612	23.062	0	184.9434	149.7908	77.07214	83.56154
Bean	3001.698	11.008	49.28	55.07267	0	99.536	2885.361	1.621069	98.74104
Rapeseed	55.19	0	258135.6	38728.62	0	6.24	219455.9	99.97862	0.021376

Gaindakot municipality

								Import	Self
	Total	Total	Total	Total	Total	Total	Total	Dependency	
	Production	Export	Import	Waste	Feed	Seed	Food	Ratio (IDR)	Ratio
Crops	(qt)	(qt)	(qt)	(qt)	(qt)	(qt)	(qt)	(%)	(SSR) (%)
Horse gram	1.15	0	461.83	0.057671	0.01	0	462.92	99.75	0.25
Black gram	36.22	2.19	1382.56	3.62	0	1.44	1411.52	97.6	2.56
Pea	851	31.83	1549.23	42.55	0	0	2325.85	65.41	35.93
Chickpea	0.58	0	1960.68	0.03	0	0	1961.22	99.97	0.03
Kidney bean	130.43	4.5	93.14	6.52	0	0	212.54	42.51	59.54
Lentil	84.27	8.82	6671.88	4.36	37.54	10.5	6694.9	98.88	1.25
Soybean	3.22	1.33	805.06	0.32	0.58	0.01	806.04	99.76	0.4
Bean	88.64	44.24	627.67	8.86	0	4.44	658.75	93.39	13.19
Rapeseed	3553.06	351.93	2596.7	184.05	0	55.44	5558.31	44.79	61.28

Devchuli municipality

Crops	Total production (qt)	Total export (qt)	Total import (qt)	Total Waste (qt)	Total Feed (qt)	Total Seed (qt)	Total Food (qt)	Import Dependency Ratio (IDR) (%)	Self Sufficiency Ratio (SSR) (%)
Pea	1922.073553	0.015177537	1013.061571	134.5451487	0.0444485	126.971211	2673.559	34.51517	65.48534942
Chickpea	0.020745995		1157.821125	0.001203268		0.00572775	1157.83494	99.99821	0.001792
Kidney bean	14.07330888	0.002710274	145.0105256	1.407330888		2.82261631	154.8512	91.15508	8.846624
Lentil	58.92665912		4411.464437	3.417746229	0.0043364	32.2306225	4434.738	98.68185	1.318154
Soybean	6.046371593	0.055525376	142.6048859	0.604637159	0.0829344	1.03561515	146.8725	95.96836	4.069008
Bean	20.65742496	0.027102745	658.9495754	2.065742496		0.63272723	676.8814	96.96425	3.039735
Black gram	24.98352608	0.096147852	1160.118896	2.498352608	0.0086729	2.56998171	1179.929	97.89981	2.108303
Rapeseed	3442.17786	0.05420549	9119.14651	178.3048132		85.0520326	12297.91	72.59733	27.4031

Binayee Triveni rural municipality

Crops	Total Production (Qt)	Total Export (Qt)	Total Import (Qt)	Total Waste (Qt)	Total Feed (Qt)	Total Seed (Qt)	Total Food (Qt)	IDR (%)	SSR (%)
Pea	130.633078	4.117003519	426.8841379	9.144315463		11.98782469	532.2680723	77.13841	23.6055345
Chickpea	0.16964717		548.6109705	0.009839536		0.151970123	548.618808	99.96909	0.03091348
Kidney bean	4.930462425		322.525	0.493046243		1.767803226	325.194613	98.49431	1.50568947
Lentil	830.9125452	16.62554959	1351.368514	48.19292762	0.004286777	131.4968459	1985.961449	62.39998	38.3677155
Soybean	0.002410555		152.9133945	0.000241055		0.027778774	152.8877852	99.99842	0.00157639
Bean	552.3154183	6.275841322	28.23291178	55.23154183		6.877888229	512.1630587	4.916292	96.1765415
Black gram	0.904292892	0.102882645	51.74391833	0.135384844		0.537273228	51.8726705	98.47482	1.72097676
Pigeon pea	0.904292892		695.6483902	0.072343431		0.319239795	696.1610999	99.87018	0.12982405
Rapeseed	16071.71119	3.395466819	5181.13273	832.5146398	0.071090827	214.6041522	20202.25857	24.38243	75.6335452

Status of vegetables in several municipal bodies

Bharatpur 14

	Total	Total	Total	Total	Total	Total	Total	Import	Self-
	Production	Export	Import	Waste	Feed	Seed	Food	Dependency	Sufficiency
Vegetables	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	Ratio (IDR)	Ratio (SSR)
Cauliflower	424.347	1.316304	403.1374	84.869405	0	0	741.2987	48.79605	51.36328
Cabbage	305.7415	1.170048	105.4692	61.148304	0	0	348.8924	25.72164	74.56371
Tomato	155.9416	0	1074.982	31.18833	0	0	1199.735	87.33133	12.66867
Carrot	827.9707	0	27.4784	165.59415	0	0	689.855	3.212161	96.78784
Green Leafy									
Vegetable	3230.928	0		969.2784	0	0	2261.65	0	100
Pumpkin	1351.405	49.0352	5.9832	270.28109	0	0	1038.072	0.457308	103.2905

Bulingtar rural municipality

	Total	Total	Total	Total	Total	Total	Total	Import	Self-
	Production	Export	Import	Waste	Feed	Seed	Food	Dependency	Sufficiency
Vegetables	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	Ratio (IDR)	Ratio (SSR)
Cauliflower	801.9942	24.47	241.05	110.8187	0	0	907.7555	23.66543	78.73694
Cabbage	1424.8	55.69	189.626	179.3412	0	0	1379.395	12.16537	91.4074
Tomato	2649.8	43.389	767.1818	169.5706	0	0	3204.022	22.74079	78.54534
Carrot	0	0	31.11152	15.55576	0	0	15.55576	100	0
Green Leafy									
Vegetable	8989.429	298.2592	3.214	4251.927	0	0	4442.457	0.036966	103.3935
Pumpkin	36474	535.4524	0	10942.2	14589.6	0	24996.35	0	101.4899
Colocasia	1705.735	106.1096	15.47862	233.6578	0	0	1381.446	0.958367	105.6115

Gaindakot municipality

	Total	Total	Total	Total	Total	Total		Import Dependency	Self Sufficiency
	Production	Export	Import	Waste	Feed	Seed	Total	Ratio (IDR)	Ratio (SSR)
Crops	(qt)	(qt)	(qt)	(qt)	(qt)	(qt)	Food (qt)	(%)	(%)
Cauliflower	13876.97	202.04	8284.6	2775.4	0.069	0	19184.08	37.73	63.19
Cabbage	12541.84	217.28	2085.59	2508.37	0	0	11901.79	14.47	87.03
Tomato	3492.07	112.90	18992.8	698.41	0	0	21673.54	84.89	15.6
Carrot	1448.46	0.05	637.12	289.69	0	0	1795.85	30.55	69.45
Green Leafy									
Vegetables	48998.68	279.35	104.27	14699.6	0	0	34124	0.21	100.35
Chilies	3668.4	37.26	5579.76	550.26	0	0	8660.64	60.58	39.8
Pumpkin	23839.91	548.54	58.48	4767.98	0.58	0	18581.29	0.25	102.01

Devchuli municipality

								Import	Self
	Total					Total		Dependency	Sufficiency
	production	Total export	Total import	Total waste	Total feed	seed	Total food	Ratio (IDR)	Ratio (SSR)
Crops	(qt)	(qt)	(qt)	(qt)	(qt)	(qt)	(qt)	(%)	(%)

Potato	1416.593457	3.062610158	11768.41561	141.6593457	0.1192521	13040.17	89.27677	10.74647
Cauliflower	4212.069002	2.336256598	3235.261146	842.4138004		6602.58	43.45552	56.57586
Cabbage	3655.497877	1.631797443	1549.945745	731.0995754		4472.712	29.78482	70.24654
Tomato	5110.752654	17.88243722	9742.037155	1022.150531		13812.76	65.66969	34.45086
Carrot	133.550943	0.005420549	163.6685971	26.7101886		270.5039	55.06757	44.93425
Green Leafy vegetables	9077.981423	0.368597329	199.1061045	2723.394427		6553.325	2.146299	97.85767
Pumpkin	9078.23673	7.544429138	50.25309625	1815.647346		7305.298	0.550964	99.53175
Chilly	198.5127219	0.377245936	1021.101596	11.91076331		1207.326	83.74922	16.28172
Colocasia	1304.328723		18.49243687	130.4328723		1192.388	1.397954	98.60205
Mushroom	14.36174445		822.6529724	0.718087222		836.2966	98.28417	1.715829

Binayee Triveni rural municipality

	Total Production	Total Export	Total Import	Total Waste	Total	Total	Total Food		
Crops	(Qt)	(Qt)	(Qt)	(Qt)	Feed (Qt)	Seed (Qt)	(Qt)	IDR (%)	SSR (%)
Potato	10044.34967	186.4852489	3040.019913	1004.434967			11893.44937	23.56991	77.8759478
Cauliflower	3358.996986	302.7047408	495.597617	671.7993973			2880.090465	13.95307	94.5692889
Cabbage	3457.678326	198.4225923	535.2511111	691.5356651			3102.971179	14.10595	91.1232597
Tomato	2885.093514	147.7947672	885.0084848	577.0187027			3045.288528	24.43218	79.6479517
Carrot	23.43438017	1.343190083	267.7260444	4.686876033			285.1303585	92.37754	8.0859167
GLV	3714.180167	36.50975698	35.48498623	1114.25405			2598.901346	0.955656	100.027598
Pumpkin	436.402373	20.58790346	73.28559947	87.28047459			401.8195944	14.98376	89.2255799
Chilly	627.5690909	52.2272314	375.0141379	37.65414545			912.701852	39.46039	66.0351587
Colocasia	279.6676246	17.16843469	12.59621636	27.96676246			247.1286438	4.578854	101.662048
Mushroom	508.8333393	86.09099132	392.9003448	25.44166697			790.2010259	48.17064	62.3843435

Status of fruits in several municipal bodies

Bharatpur 14

	Total	Total	Total	Total				Import	Self-
	Production	Export	Import	Waste	Total	Total	Total	Dependency	Sufficiency
Fruits	(qt.)	(qt.)	(qt.)	(qt.)	Feed (qt.)	Seed (qt.)	Food (qt.)	Ratio (IDR)	Ratio(SSR)
Banana	3397.881	57.888	49660.56	679.57629	0	0	52320.98	93.69819	103.2905
Mango	196.8532	0	178.7395	29.527973	0	0	346.0646	47.58865	6.41103
Orange	0	0	670.6946	0	0	0	670.6946	100	52.41135
Pomegranate	0	0	32.7886	0	0	0	32.7886	100	0
Apple	0	0	520.76	0	0	0	520.76	100	0
Litchi	0.93072	0	126.1777	0.093072	0	0	127.0153	99.26777	0

Bulingtar rural municipality

	Total	Total	Total	Total				Import	Self-
	Production	Export	Import	Waste	Total	Total	Total Food	Dependency	Sufficiency
Fruits	(qt.)	(qt.)	(qt.)	(qt.)	Feed (qt.)	Seed (qt.)	(qt.)	Ratio (IDR)	Ratio(SSR)

Banana	100285.3	7933.9	12064.69	20057.06	0	0	84359.03	11.55444	96.04391
Mango	193.177	0	474.455	19.3177	0	0	648.3143	71.06535	28.93465
Orange	2200	2000	309.778	220	0	0	289.778	60.76724	431.5604
Pomegranate	0	0	44.1192	4.41192	0	0	39.70728	100	0
Apple	0	0	252.6975	25.26975	0	0	227.4278	100	0

Gaindakot municipality

								Import	Self
	Total	Total	Total	Total	Total	Total		Dependency	Sufficiency
	Production	Export	Import	Waste	Feed	Seed	Total Food	Ratio (IDR)	Ratio (SSR)
Crops	(qt)	(qt)	(qt)	(qt)	(qt)	(qt)	(qt)	(%)	(%)
Banana	2917.53	54.5	11183.55	437.63	0	0	13608.95	79.62	20.77
Mango	7930.02	4.61	2592.54	1189.5	0	0	9328.44	24.65	75.39
Orange	0	0	6014.29	0	0	0	6014.29	100	0
Papaya	5744.26	0.14	1.49	861.64	0	0	4883.97	0.026	99.98
Pomegranate	0.93	0	1582.82	0.09	0	0	1583.66	99.94	0.06
Apple	0	0	4332.8	0	0.2	0	4332.6	100	0

Devchuli municipality

								Import	Self
	Total	Total	Total		Total	Total		Dependency	Sufficiency
	production	municipal	municipal	Total waste	feed	seed	Total food	Ratio (IDR)	Ratio (SSR)
Crops	(qt)	export (qt)	import (qt)	(qt)	(qt)	(qt)	(qt)	(%)	(%)
Banana	304.9546634	7.18981613	4508.333344	60.9909327			4745.108	93.80444	6.345161
Mango	715.6317137	1.691211273	1127.950106	107.3447571			1734.546	61.23871	38.85311
Orange			10481.4087	0.010841098			10481.51	100	0
Litchi	11.66974183		619.1595745	1.166974183			629.6623	98.1501	1.849905
Apple			2513.761146				2513.761	100	0
Pineapple	1.803958691	0.048784941	379.3874735	0.360791738			380.7819	99.5395	0.473303
Papaya	599.6650315	0.005432082	21.85565337	119.9330063			501.5822	3.516511	96.48436

Binayee Triveni rural municipality

	Total				Total	Total			
	Production	Total Export	Total Import	Total Waste	Feed	Seed	Total Food		
Crops	(Qt)	(Qt)	(Qt)	(Qt)	(Qt)	(Qt)	(Qt)	IDR (%)	SSR (%)
Banana	46609.12427	15517.12091	1072.508184	9321.824854			22842.68669	3.334446	144.908541
Mango	1677.26481	363.8855064	796.575	251.5897216			1858.364583	37.75319	79.4929448
Orange			999.9383333				999.9383333	100	0
Litchi	97.7385124	0.428677686	349.7959111	9.77385124			437.3318946	78.23561	21.8602676
Apple			1015.7875				1015.7875	100	0
Papaya	24.5633025	0.171471074	6.738754603	4.912660499			26.21792552	21.64673	78.90408

Status of animal products in several municipal bodies

Bharatpur 14

	Total	Total	Total		Total	Total		Import	Self-
Animal	Production	Export	Import	Total	Feed	Seed	Total	Dependency	Sufficiency
Product	(qt.)	(qt.)	(qt.)	Waste (qt.)	(qt.)	(qt.)	Food (qt.)	Ratio (IDR)	Ratio (SSR)
Chicken/									
Duck Egg	1020600	1000000	352570	20412	0	0	352758	94.47973	273.4946
Chicken									
Meat	941220	894000	1333.744	47061	0	0	1492.744	2.746944	1938.512
Milk	1886746	1440000	360000	94337.28	0	0	712408.3	44.62373	233.8712
Goat									
Meat	13.098	13.7392	426.8016	0.6549	0	0	425.5055	100.1505	3.073491
Buffalo									
Meat	0	0	14.39824	1.0078767	0	0	13.39036	100	0
Pig	0	0	4.430227	0.3101159	0	0	4.120111	100	0
Fish	0	0	203.4049	14.238341	0	0	189.1665	100	0

Bulingtar rural municipality

	Total	Total	Total	Total	Total	Total		Import	Self-
Animal	Production	Export	Import	Waste	Feed	Seed	Total Food	Dependency	Sufficiency
Products	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	(qt.)	Ratio(IDR)	Ratio(SSR)
Chicken/									
Duck Egg	101759	0	638782.5	10523.73	0	0	730017.8	86.25884	13.74116
Cow Milk	46281.6	480	4306.76	5031.517	0	0	45076.84	8.594893	92.36303
Buffalo									
Milk	396581.9	0	46484.08	19923.59	0	0	423142.4	10.49146	89.50854
Chicken									
Meat	1204.94	675.804	1029.758	142.9427	0	0	1415.951	66.05696	77.29454
Goat									
Meat	1232.583	728.6759	271.8	28.86172	0	0	746.8456	35.03899	158.898
Buffalo									
Meat	85.59	215.0914	461.456	35.61433	0	0	296.3403	139.0118	25.78365
Pig	316.1933	223.72	1284.726	43.28615	0	0	1333.913	93.28541	22.95915

Gaindakot municipality

								Import	Self
								Dependency	Sufficiency
Animal	Total	Total	Total	Total	Total	Total		Ratio (IDR)	Ratio (SSR)
Products	Production	Export	Import	Waste	Feed	Seed	Total Food	(%)	(%)
Milk (Cow	20154000								
and Buffalo)	Liters	15115500	0	1007700	0	0	4030800	0	400
Chicken/	2080000								
Duck (Egg)	pieces	577193.8	3139990	41600	0	0	4601195.698	67.63	44.8
Chicken/	6116.02								
Duck (Meat)	quintal	4000	2288.88	181.437	0	0	3701.628	51.96213	138.8458
	2400								
Goat Meat	quintal	920	5397.323	197.8635	0	0	6679.46	78.48	34.8973
Buffalo									
Meat	13750	650	68.34046	962.5	0	0	12205.84	0.518975	104.4171
Pig Meat	1800	19.03163	58.70436	1.38064	0	0	1838.292	3.191022	97.84349
Fish	10	0	4095.6	0.5	0	0	4105.107	99.75643	0.243569

Devchuli municipality

								Import	Self
								Dependency	Sufficiency
	Total				Total	Total		Ratio (IDR)	Ratio
Products	production	Total export	Total import	Total waste	feed	seed	Total food	(%)	(SSR) (%)
Chicken/	507220.4528								
Duck (Eggs)	pieces	11489.39556	3160879.756	10144.40906			3646466	86.44288	13.87133
Milk (Cow	4509200.57								
& Buffalo)	liters	3132000	29264.9475	46672.82367			1359793	2.080744	320.6051
Chicken/	6886.37								
Duck (Meat)	quintal	4320	4429.5	128.3184871			5070.976	63.31593	98.43479
Goat (Meat)	45.095 quintal	27	1332.102073	2.25475			1347.942	98.65983	3.339883
Buffalo	27.04745516								
(Meat)	quintal	5.056288062	233.8235099	1.893321861			253.9214	91.40348	10.57307
	235.2642918								
Pig (Meat)	quintal	142.4243021	360.4594586	16.46850042			436.8309	79.51906	51.90041
	8.260916602								
Fish (Meat)	quintal	2.656068986	995.7006369	0.41304583			1000.892	99.44025	0.825015

Binayee Triveni rural municipality

	Total				Total	Total			
Commodities	Production	Total Export	Total Import	Total Waste	Feed	Seed	Total Food	IDR (%)	SSR (%)
Chicken/									
Duck (Eggs)	109620000	93600000		2192400			10620000	0	684.269663
Milk (Cow &									
Buff)	5328000	540000	216000	266400			3204000	4.316547	106.47482
Chicken/									
Duck (Meat)	8922.928715	7758.532535	1715.603822	446.1464358			2880	59.56958	309.823913
Goat (Meat)	899.429741	360	900.5702585	44.97148705			1440	62.5396	62.4603987
Buffalo									
(Meat)	1878.908982	810	83.09101851	131.5236287			1152	7.212762	163.099738
Pig (Meat)	628.732562	360	199.267438	44.01127934			468	42.57851	134.344565
Fish	14.2892562	13.43190083	413.6892988	0.71446281			413.8321913	99.79318	3.44695972

Per Year Individual Food and total nutrients supplied in several municipal bodies

Bharatpur 14

Crops	Per Year Individual Food	Total Calorie Intake per day (K Cal)	Total Protein Intake per day (gm)	Total Fat Intake per day (gm)
Paddy	1.859	1230.512	24.253	1.783
Wheat	0.117792	81.98339	2.591429	0.212026
Maize	0.040598	38.03978	1.234624	0.400419
Potato	0.294758	78.33295	1.29209	0.080756
Cowpea	0.019077	16.8822	1.259632	0.052267
Chickpea	0.016952	17.27668	0.966008	0.260079
Kidney-bean	0.020378	19.31754	1.278531	0.07258
Lentil	0.06751	63.44099	4.642475	0.129471

			,	
Soybean	0.018394	21.77032	1.678129	0.891979
Bean	0.029033	3.818024	0.954506	0.095451
Rapeseed	0.22122	234.554	0	0.260616
Cauliflower	0.067532	5.550575	1.091613	0.240525
Cabbage	0.031784	2.351141	0.156743	0.008708
Tomato	0.109295	6.288225	0.389271	0.029944
Carrot	0.062845	8.230177	0.154961	0.034436
Green Leafy Vegetable	0.206035	34.4333	1.128961	1.473294
Pumpkin	0.094568	6.477257	0.362726	0.025909
Banana	4.766419	30.29614	0.313408	0.078352
Mango	0.031526	6.478015	0.095011	0.005182
Orange	0.0611	8.035067	0.117178	0.033479
Pomegranate	0.002987	0.531936	0.013094	0.000818
Apple	0.047441	7.668547	0.025995	0.064988
Litchi	0.011571	1.933791	0.034872	0.00634
Chicken/Duck Egg	32.13611	15.23163	1.170987	1.170987
Chicken Meat	0.135988	69.67073	7.004331	6.557246
Milk	64.90009	119.1317	5.689871	7.290147
Goat Meat	0.038763	12.53172	2.272702	0.382324
Buffalo Meat	0.00122	0.287418	0.064836	0.003008
Pig	0.000375	0.11723	0.01923	0.004525
Fish	0.017233	4.579726	0.788468	0.066099
Total		2145.752	61.045	21.715

Bulingtar rural municipality

Crops	Per Year Individual Food	Total Calorie Intake per day (K Cal)	Total Protein Intake per day (gm)	Total Fat Intake per day (gm)
Paddy	1.599402	1297.64	25.57	2.6866
Wheat	0.005307	3.693659	0.116754	0.013086
Maize	0.206691	193.6667	6.285673	2.038597
Potato	0.201797	53.62817	0.884588	0.055287
Millet	0.058029	51.19292	1.160585	0.206679
Cowpea	0.04222	37.36196	2.787688	0.115672
Chickpea	0.020009	20.39233	1.140216	0.306981
Black Gram	0.062289	59.21757	3.583772	0.273049
Lentil	0.050749	47.69037	3.489879	0.097327
Soyabean	0.007354	8.704175	0.670947	0.356629
Bean	0.141661	18.62946	4.657364	0.465736

		1		,
Rapeseed	10.77454	114.2397	0	12.6933
Cauliflower	0.044568	3.663101	0.72041	0.158734
Cabbage	0.067724	5.009693	0.33398	0.018554
Tomato	0.157307	9.05052	0.56027	0.043098
Carrot	0.000764	0.100018	0.001883	0.000418
Green Leafy Vegetable	0.21811	36.4512	1.195121	1.559633
Pumpkin	1.227236	84.05728	4.707207	0.336229
Colocasia	0.067824	18.02455	0.55746	0.018582
Banana	4.141743	26.31452	0.272708	0.068055
Mango	0.03183	6.54042	0.095926	0.005232
Orange	0.014227	1.870964	0.027285	0.007796
Pomegranate	0.001949	0.34717	0.008546	0.000534
Apple	0.011166	1.804904	0.006118	0.015296
Chicken/Duck Egg	35.84141	16.98784	1306.002	1306.002
Cow Milk	2.213121	4.062441	0.194027	0.248597
Buffalo Milk	20.77486	59.7633	2.447449	3.699633
Chicken Meat	0.069518	35.61629	3.580675	3.352121
Goat Meat	0.036668	11.85418	2.149826	0.361653
Buffalo Meat	0.014549	3.428056	0.773306	0.035875
Pig	0.065491	20.45461	3.355273	0.789476
Total		2206.62	67.92	30.8388

Gaindakot municipality

Crops	Per Year Individual Food (quintal)	Total Calorie Intake per day (K Cal)	Total Protein Intake per day (gm)	Total Fat Intake per day (gm)
Paddy	1.572877313	1040.68458	20.51204	1.508239
Wheat	0.259256392	180.442449	5.703641	0.466662
Maize	0.040078903	37.5533829	1.218838	0.395299
Millet	0.006954821	6.13548551	0.139096	0.024771
Potato	0.314299911	83.5262778	1.377753	0.08611
Horse gram	0.00605811	5.34441455	0.350375	0.014108
Black gram	0.018472298	17.4095078	1.06279	0.080974
Pea	0.03043785	26.6018468	1.64281	0.158444
Chickpea	0.025666085	26.1583111	1.462615	0.393781
Kidney bean	0.002781527	2.63673508	0.174512	0.009907
Lentil	0.087614733	82.3338451	6.025013	0.168028
Soybean	0.010548435	11.8778268	0.962364	0.511527
Bean	0.008620928	7.79426331	0.533789	0.033539

Rapeseed	0.115391168	171.031841	6.322804	5.209339
Cauliflower	0.251057818	20.6348892	4.058195	0
Cabbage	0.155756077	11.5216824	0.768112	0.042673
Tomato	0.283636813	16.3188304	1.010213	0.077709
Carrot	0.023501888	3.07778145	0.05795	0.012878
Green Leafy Vegetables	0.446573246	74.632789	6.239791	1.345837
Chilly	0.113339886	9.00508681	0.900509	0.186312
Pumpkin	0.243169238	16.6554272	0.932704	0.066622
Banana	0.178097264	56.6007742	0.585525	0.146381
Mango	0.122079295	25.0847866	0.36791	0.020068
Orange	0.07870772	10.3506043	0.150946	0.043128
Papaya	0.063915458	5.60354698	0.105067	0.017511
Pomegranate	0.020724983	3.69075035	0.090849	0.005678
Apple	0.056699867	9.1651839	0.031068	0.077671
Chicken/Duck (Egg)	60.2148286 pieces	14.2698932	4.966816	4.966816
Milk (Cow and Buffalo)	52.75018649 liters	96.8291094	4.624674	5.925363
Chicken/Duck (Meat)	0.048442385	24.8184276	2.495115	2.335852
Goat Meat	0.087412612	28.2594197	5.125013	0.862152
Buffalo Meat	0.15973513	37.6362223	8.490032	0.393867
Pig Meat	0.024057321	7.51379349	1.232526	0.290006
Fish	0.053722623	53.8698083	9.552324	1.639644
Total		2225.06957	99.27378	34.85832

Devchuli municipality

Commodities	Per year Individual Food	Total calorie intake per day (Kcal)	Total protein intake per day (gm)	Total fat intake per day (gm)
Paddy	1.95039	1290.46	25.4352	1.87024
Wheat	0.191366	133.1908	4.210054	0.344459
Maize	0.002772	2.597325	0.084299	0.02734
Potato	0.262711	69.81625	1.151608	0.071976
Millet	0.002508	2.212869	0.050168	0.008934
Buckwheat	4.0835E-05	0.035017	0.000682	0.000145
Pea	0.053862222	47.07411	2.907084	0.280379
Chickpea	0.023326046	23.77339	1.329265	0.357879
Kidney bean	0.003119672	2.957278	0.195727	0.011111
Lentil	0.089343401	83.95832	6.143889	0.171344
Soybean	0.002958933	3.331839	0.269952	0.143488
Bean	0.01363663	12.32901	0.84435	0.053052
Black gram	0.023771164	22.40351	1.367656	0.104202

Rapeseed	0.247756982	157.906	5.837562	11.58756
Cauliflower	0.133017307	10.93293	2.150143	0.874634
Cabbage	0.090108432	6.665555	0.44437	0.024687
Tomato	0.278275416	16.01037	0.991118	0.07624
Carrot	0.005449643	0.713679	0.013437	0.002986
Green Leafy Vegetables	0.132024991	22.06445	1.844733	0.397884
Pumpkin	0.147174448	10.08044	0.564505	0.040322
Chilly	0.024323112	1.932521	0.193252	0.039983
Colocasia	0.024022167	6.383973	0.197442	0.006581
Mushroom	0.016848251	1.707905	0.138479	0.009232
Banana	0.007966348	30.38125	0.314289	0.078572
Mango	0.034944615	7.1804	0.105313	0.005744
Orange	0.21116317	27.7694	0.40497	0.115706
Litchi	0.012685342	2.120016	0.03823	0.006951
Apple	0.05064289	8.186111	0.02775	0.069374
Pineapple	0.007671331	0.966798	0.008407	0.002102
Papaya	0.010105007	0.885918	0.016611	0.002768
Chicken/ Duck (Egg)	73.46267 pieces	17.53699	1.905753	1.348219
Milk (Cow & Buffalo)	27.39474 liters	50.286	2.401	3.077
Chicken/Duck (Meat)	0.102	52.340	5.262	4.926
Goat (Meat)	0.027156	8.7792	1.59216	0.26784
Buffalo (Meat)	0.005115566	1.205311	0.271896	0.012614
Pig (Meat)	0.008800511	2.748653	0.450875	0.106088
Fish (Meat)	0.020164241	20.21949	3.585368	0.615424
Total		2159.146	72.75033	27.1394

Binayee Triveni rural municipality

Commodities	Per year Individual Food	Total Calorie Intake per Day (Kcal)	Total Protein Intake per Day (gm)	Total Fat Intake per Day (gm)
Paddy	1.83072157	1211.285638	23.87461548	1.755486
Wheat	0.13517717	94.0833119	2.97389779	0.243319
Maize	0.00893133	8.368530105	0.271610188	0.08809
Millet	0.00143471	1.2656895	0.028694203	0.000393
Barley	6.0631E-05	0.05581354	0.001910285	0.000216
Sugarcane	0.11356554	0.248910769	0	0
Pea	0.01376045	12.02625869	0.742687449	0.07163
Chickpea	0.01418316	14.4551657	0.808245824	0.217605
Kidney bean	0.00840709	7.969459792	0.527458466	0.029943
Lentil	0.05134204	48.24745129	3.530644394	0.098464
Soybean	0.00395253	4.450656262	0.360600617	0.191671

Bean	0.01324069	11.97103313	0.81983439	0.051512
Black gram	0.00134104	1.263881893	0.077155581	0.005879
Pigeon pea	0.01799749	16.51824874	1.099572976	0.083824
Rapeseed	0.5222786	332.8703315	0.123057424	0.244269
Potato	0.30747523	81.71259533	1.347836624	0.08424
Cauliflower	0.0744575	6.119794325	1.203559551	0.489584
Cabbage	0.08021952	5.934046544	0.395603103	0.021978
Tomato	0.07872828	4.52957217	0.280402087	0.021569
Carrot	0.00737133	0.965341105	0.018175879	0.004039
GLV	0.06718806	11.22868947	0.93879207	0.202485
Pumpkin	0.01038804	0.711509269	0.039844519	0.002846
Chilly	0.02359561	1.874719825	0.187471983	0.038787
Colocasia	0.00638889	1.697869327	0.052511422	0.00175
Mushroom	0.02042866	2.07085054	0.167906801	0.011194
Banana	0.59054023	1.876785393	0.019415021	0.004854
Mango	0.04804334	9.871919964	0.144788159	0.007898
Orange	0.02585089	3.399569291	0.049577052	0.014165
Litchi	0.01130612	1.88951537	0.034073228	0.006195
Apple	0.02626063	4.244869255	0.014389387	0.035973
Papaya	0.0006778	0.059423434	0.001114189	0.000186
Chicken/Duck (Eggs)	274.553398	65.06539439	7.070690258	5.002137
Milk (Cow & Buff)	82.8313642	152.0466138	7.261927823	9.304345
Chicken/Duck (Meat)	0.07445516	38.14551975	3.834950648	3.590167
Goat (Meat)	0.03722758	12.03521746	2.182658082	0.367176
Buffalo (Meat)	0.02978206	7.017143739	1.582937076	0.073435
Pig (Meat)	0.01209896	3.778854296	0.619864696	0.145851
Fish	0.01069859	10.72790202	1.902297381	0.326527
Total		2214.752	67.054	24.582

Calorie consumption status of several municipal bodies

Bharatpur 14

Age group	Actual population	Recommended Calorie (Kcal)	Actual calorie Needed (Kcal)
0-18	2803	1829.411	5127839
18-30	2024	2433.333	4925066
30-60	5527	2216.666	12251513
60+	623	2025	1261575
		Total calorie required	23565993
		Average calorie required	2146.852

Bulingtar municipality

Age group	Actual population	Recommended calorie (Kcal)	Actual calorie Needed (Kcal)
0-18	6456.656	1829.411	11811877.51
18-30	4888.32	2433.333	11894910.37
30-60	7475.056	2216.666	16569702.48
60+	1547.968	2025	3134635.2
		Total calorie required	43411125.56
		Average calorie required	2131.339629

Gaindakot municipality

Age Group	Actual population	Recommended calorie (Kcal)	Total Calorie needed (Kcal)
0-18	19363	1829.411	35422885.19
18-30	17132	2433.333	41687860.96
30-60	32124	2216.666	71208178.58
60 and			
above	7794.126	2025	15783105.15
		Total calorie required	164102029.9
		Average calorie required	2147.566905

Devchuli municipality

Age group	Population	Recommended calorie (Kcal)	Total calorie required (Kcal)
0-18	13898.36	1829.411	25425813
18-30	13401.99	2433.333	32611505
30-60	17869.32	2216.666	39610314
60+	4467.33	2025	9046343.3
		Total calorie required	106693975
		Average calorie required	2149.4848

Binayee Triveni rural municipality

Age group	Population	Recommended calorie (Kcal)	Total Calorie required (Kcal)
0-18	10934.05653	1829.411	20002883.3
18-30	9712.85022	2433.333	23634598.97
30-60	15108.87812	2216.666	33491336.43
60+	3152.4163	2025	6383643.007
	38908.20117	Total calorie required	83512461.7
		Average calorie required	2159.004723

Inception Meeting

Focus Group Discussion (FGD)

Household Survey

Triangulation and Validation Meeting